| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "sparse.h" | 
 |  | 
 | template<typename SparseMatrixType> void sparse_product(const SparseMatrixType& ref) | 
 | { | 
 |   typedef typename SparseMatrixType::Index Index; | 
 |   const Index rows = ref.rows(); | 
 |   const Index cols = ref.cols(); | 
 |   typedef typename SparseMatrixType::Scalar Scalar; | 
 |   enum { Flags = SparseMatrixType::Flags }; | 
 |  | 
 |   double density = std::max(8./(rows*cols), 0.01); | 
 |   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
 |   typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
 |  | 
 |   // test matrix-matrix product | 
 |   { | 
 |     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refMat3 = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refMat4 = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refMat5 = DenseMatrix::Random(rows, rows); | 
 |     DenseMatrix dm4 = DenseMatrix::Zero(rows, rows); | 
 |     SparseMatrixType m2(rows, rows); | 
 |     SparseMatrixType m3(rows, rows); | 
 |     SparseMatrixType m4(rows, rows); | 
 |     initSparse<Scalar>(density, refMat2, m2); | 
 |     initSparse<Scalar>(density, refMat3, m3); | 
 |     initSparse<Scalar>(density, refMat4, m4); | 
 |     VERIFY_IS_APPROX(m4=m2*m3, refMat4=refMat2*refMat3); | 
 |     VERIFY_IS_APPROX(m4=m2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); | 
 |     VERIFY_IS_APPROX(m4=m2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); | 
 |     VERIFY_IS_APPROX(m4=m2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); | 
 |  | 
 |     // sparse * dense | 
 |     VERIFY_IS_APPROX(dm4=m2*refMat3, refMat4=refMat2*refMat3); | 
 |     VERIFY_IS_APPROX(dm4=m2*refMat3.transpose(), refMat4=refMat2*refMat3.transpose()); | 
 |     VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3, refMat4=refMat2.transpose()*refMat3); | 
 |     VERIFY_IS_APPROX(dm4=m2.transpose()*refMat3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); | 
 |  | 
 |     VERIFY_IS_APPROX(dm4=m2*(refMat3+refMat3), refMat4=refMat2*(refMat3+refMat3)); | 
 |     VERIFY_IS_APPROX(dm4=m2.transpose()*(refMat3+refMat5)*0.5, refMat4=refMat2.transpose()*(refMat3+refMat5)*0.5); | 
 |      | 
 |     // dense * sparse | 
 |     VERIFY_IS_APPROX(dm4=refMat2*m3, refMat4=refMat2*refMat3); | 
 |     VERIFY_IS_APPROX(dm4=refMat2*m3.transpose(), refMat4=refMat2*refMat3.transpose()); | 
 |     VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3, refMat4=refMat2.transpose()*refMat3); | 
 |     VERIFY_IS_APPROX(dm4=refMat2.transpose()*m3.transpose(), refMat4=refMat2.transpose()*refMat3.transpose()); | 
 |  | 
 |     VERIFY_IS_APPROX(m3=m3*m3, refMat3=refMat3*refMat3); | 
 |   } | 
 |  | 
 |   // test matrix - diagonal product | 
 |   { | 
 |     DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); | 
 |     DiagonalMatrix<Scalar,Dynamic> d1(DenseVector::Random(rows)); | 
 |     SparseMatrixType m2(rows, rows); | 
 |     SparseMatrixType m3(rows, rows); | 
 |     initSparse<Scalar>(density, refM2, m2); | 
 |     initSparse<Scalar>(density, refM3, m3); | 
 |     VERIFY_IS_APPROX(m3=m2*d1, refM3=refM2*d1); | 
 |     VERIFY_IS_APPROX(m3=m2.transpose()*d1, refM3=refM2.transpose()*d1); | 
 |     VERIFY_IS_APPROX(m3=d1*m2, refM3=d1*refM2); | 
 |     VERIFY_IS_APPROX(m3=d1*m2.transpose(), refM3=d1 * refM2.transpose()); | 
 |   } | 
 |  | 
 |   // test self adjoint products | 
 |   { | 
 |     DenseMatrix b = DenseMatrix::Random(rows, rows); | 
 |     DenseMatrix x = DenseMatrix::Random(rows, rows); | 
 |     DenseMatrix refX = DenseMatrix::Random(rows, rows); | 
 |     DenseMatrix refUp = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refLo = DenseMatrix::Zero(rows, rows); | 
 |     DenseMatrix refS = DenseMatrix::Zero(rows, rows); | 
 |     SparseMatrixType mUp(rows, rows); | 
 |     SparseMatrixType mLo(rows, rows); | 
 |     SparseMatrixType mS(rows, rows); | 
 |     do { | 
 |       initSparse<Scalar>(density, refUp, mUp, ForceRealDiag|/*ForceNonZeroDiag|*/MakeUpperTriangular); | 
 |     } while (refUp.isZero()); | 
 |     refLo = refUp.transpose().conjugate(); | 
 |     mLo = mUp.transpose().conjugate(); | 
 |     refS = refUp + refLo; | 
 |     refS.diagonal() *= 0.5; | 
 |     mS = mUp + mLo; | 
 |     for (int k=0; k<mS.outerSize(); ++k) | 
 |       for (typename SparseMatrixType::InnerIterator it(mS,k); it; ++it) | 
 |         if (it.index() == k) | 
 |           it.valueRef() *= 0.5; | 
 |  | 
 |     VERIFY_IS_APPROX(refS.adjoint(), refS); | 
 |     VERIFY_IS_APPROX(mS.transpose().conjugate(), mS); | 
 |     VERIFY_IS_APPROX(mS, refS); | 
 |     VERIFY_IS_APPROX(x=mS*b, refX=refS*b); | 
 |  | 
 |     VERIFY_IS_APPROX(x=mUp.template selfadjointView<Upper>()*b, refX=refS*b); | 
 |     VERIFY_IS_APPROX(x=mLo.template selfadjointView<Lower>()*b, refX=refS*b); | 
 |     VERIFY_IS_APPROX(x=mS.template selfadjointView<Upper|Lower>()*b, refX=refS*b); | 
 |   } | 
 | } | 
 |  | 
 | void test_sparse_product() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(8, 8)) ); | 
 |     CALL_SUBTEST_2( sparse_product(SparseMatrix<std::complex<double> >(16, 16)) ); | 
 |     CALL_SUBTEST_1( sparse_product(SparseMatrix<double>(33, 33)) ); | 
 |  | 
 |     CALL_SUBTEST_3( sparse_product(DynamicSparseMatrix<double>(8, 8)) ); | 
 |   } | 
 | } |