| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "sparse.h" | 
 |  | 
 | template<typename Scalar> void sparse_vector(int rows, int cols) | 
 | { | 
 |   double densityMat = std::max(8./(rows*cols), 0.01); | 
 |   double densityVec = std::max(8./float(rows), 0.1); | 
 |   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
 |   typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
 |   typedef SparseVector<Scalar> SparseVectorType; | 
 |   typedef SparseMatrix<Scalar> SparseMatrixType; | 
 |   Scalar eps = 1e-6; | 
 |  | 
 |   SparseMatrixType m1(rows,cols); | 
 |   SparseVectorType v1(rows), v2(rows), v3(rows); | 
 |   DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); | 
 |   DenseVector refV1 = DenseVector::Random(rows), | 
 |     refV2 = DenseVector::Random(rows), | 
 |     refV3 = DenseVector::Random(rows); | 
 |  | 
 |   std::vector<int> zerocoords, nonzerocoords; | 
 |   initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); | 
 |   initSparse<Scalar>(densityMat, refM1, m1); | 
 |  | 
 |   initSparse<Scalar>(densityVec, refV2, v2); | 
 |   initSparse<Scalar>(densityVec, refV3, v3); | 
 |  | 
 |   Scalar s1 = ei_random<Scalar>(); | 
 |  | 
 |   // test coeff and coeffRef | 
 |   for (unsigned int i=0; i<zerocoords.size(); ++i) | 
 |   { | 
 |     VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps ); | 
 |     //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); | 
 |   } | 
 |   { | 
 |     VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); | 
 |     int j=0; | 
 |     for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j) | 
 |     { | 
 |       VERIFY(nonzerocoords[j]==it.index()); | 
 |       VERIFY(it.value()==v1.coeff(it.index())); | 
 |       VERIFY(it.value()==refV1.coeff(it.index())); | 
 |     } | 
 |   } | 
 |   VERIFY_IS_APPROX(v1, refV1); | 
 |  | 
 |   v1.coeffRef(nonzerocoords[0]) = Scalar(5); | 
 |   refV1.coeffRef(nonzerocoords[0]) = Scalar(5); | 
 |   VERIFY_IS_APPROX(v1, refV1); | 
 |  | 
 |   VERIFY_IS_APPROX(v1+v2, refV1+refV2); | 
 |   VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3); | 
 |  | 
 |   VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2); | 
 |  | 
 |   VERIFY_IS_APPROX(v1*=s1, refV1*=s1); | 
 |   VERIFY_IS_APPROX(v1/=s1, refV1/=s1); | 
 |  | 
 |   VERIFY_IS_APPROX(v1+=v2, refV1+=refV2); | 
 |   VERIFY_IS_APPROX(v1-=v2, refV1-=refV2); | 
 |  | 
 |   VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); | 
 |   VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); | 
 |  | 
 |   VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); | 
 |  | 
 | } | 
 |  | 
 | void test_sparse_vector() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( sparse_vector<double>(8, 8) ); | 
 |     CALL_SUBTEST_2( sparse_vector<std::complex<double> >(16, 16) ); | 
 |     CALL_SUBTEST_1( sparse_vector<double>(299, 535) ); | 
 |   } | 
 | } | 
 |  |