|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #ifndef EIGEN_UMFPACKSUPPORT_H | 
|  | #define EIGEN_UMFPACKSUPPORT_H | 
|  |  | 
|  | /* TODO extract L, extract U, compute det, etc... */ | 
|  |  | 
|  | // generic double/complex<double> wrapper functions: | 
|  |  | 
|  | inline void umfpack_free_numeric(void **Numeric, double) | 
|  | { umfpack_di_free_numeric(Numeric); } | 
|  |  | 
|  | inline void umfpack_free_numeric(void **Numeric, std::complex<double>) | 
|  | { umfpack_zi_free_numeric(Numeric); } | 
|  |  | 
|  | inline void umfpack_free_symbolic(void **Symbolic, double) | 
|  | { umfpack_di_free_symbolic(Symbolic); } | 
|  |  | 
|  | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>) | 
|  | { umfpack_zi_free_symbolic(Symbolic); } | 
|  |  | 
|  | inline int umfpack_symbolic(int n_row,int n_col, | 
|  | const int Ap[], const int Ai[], const double Ax[], void **Symbolic, | 
|  | const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_symbolic(int n_row,int n_col, | 
|  | const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic, | 
|  | const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&Ax[0].real(),0,Symbolic,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], | 
|  | void *Symbolic, void **Numeric, | 
|  | const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
|  | void *Symbolic, void **Numeric, | 
|  | const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_zi_numeric(Ap,Ai,&Ax[0].real(),0,Symbolic,Numeric,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], | 
|  | double X[], const double B[], void *Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
|  | std::complex<double> X[], const std::complex<double> B[], void *Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_zi_solve(sys,Ap,Ai,&Ax[0].real(),0,&X[0].real(),0,&B[0].real(),0,Numeric,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) | 
|  | { | 
|  | return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>) | 
|  | { | 
|  | return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], | 
|  | int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric) | 
|  | { | 
|  | return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[], | 
|  | int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric) | 
|  | { | 
|  | return umfpack_zi_get_numeric(Lp,Lj,Lx?&Lx[0].real():0,0,Up,Ui,Ux?&Ux[0].real():0,0,P,Q, | 
|  | Dx?&Dx[0].real():0,0,do_recip,Rs,Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_zi_get_determinant(&Mx->real(),0,Ex,NumericHandle,User_Info); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> | 
|  | class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType> | 
|  | { | 
|  | protected: | 
|  | typedef SparseLU<MatrixType> Base; | 
|  | typedef typename Base::Scalar Scalar; | 
|  | typedef typename Base::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar,Dynamic,1> Vector; | 
|  | typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
|  | typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
|  | typedef SparseMatrix<Scalar,Lower|UnitDiag> LMatrixType; | 
|  | typedef SparseMatrix<Scalar,Upper> UMatrixType; | 
|  | using Base::m_flags; | 
|  | using Base::m_status; | 
|  |  | 
|  | public: | 
|  |  | 
|  | SparseLU(int flags = NaturalOrdering) | 
|  | : Base(flags), m_numeric(0) | 
|  | { | 
|  | } | 
|  |  | 
|  | SparseLU(const MatrixType& matrix, int flags = NaturalOrdering) | 
|  | : Base(flags), m_numeric(0) | 
|  | { | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | ~SparseLU() | 
|  | { | 
|  | if (m_numeric) | 
|  | umfpack_free_numeric(&m_numeric,Scalar()); | 
|  | } | 
|  |  | 
|  | inline const LMatrixType& matrixL() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_l; | 
|  | } | 
|  |  | 
|  | inline const UMatrixType& matrixU() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_u; | 
|  | } | 
|  |  | 
|  | inline const IntColVectorType& permutationP() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_p; | 
|  | } | 
|  |  | 
|  | inline const IntRowVectorType& permutationQ() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_q; | 
|  | } | 
|  |  | 
|  | Scalar determinant() const; | 
|  |  | 
|  | template<typename BDerived, typename XDerived> | 
|  | bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const; | 
|  |  | 
|  | void compute(const MatrixType& matrix); | 
|  |  | 
|  | protected: | 
|  |  | 
|  | void extractData() const; | 
|  |  | 
|  | protected: | 
|  | // cached data: | 
|  | void* m_numeric; | 
|  | const MatrixType* m_matrixRef; | 
|  | mutable LMatrixType m_l; | 
|  | mutable UMatrixType m_u; | 
|  | mutable IntColVectorType m_p; | 
|  | mutable IntRowVectorType m_q; | 
|  | mutable bool m_extractedDataAreDirty; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void SparseLU<MatrixType,UmfPack>::compute(const MatrixType& a) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | const Index rows = a.rows(); | 
|  | const Index cols = a.cols(); | 
|  | ei_assert((MatrixType::Flags&RowMajorBit)==0 && "Row major matrices are not supported yet"); | 
|  |  | 
|  | m_matrixRef = &a; | 
|  |  | 
|  | if (m_numeric) | 
|  | umfpack_free_numeric(&m_numeric,Scalar()); | 
|  |  | 
|  | void* symbolic; | 
|  | int errorCode = 0; | 
|  | errorCode = umfpack_symbolic(rows, cols, a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(), | 
|  | &symbolic, 0, 0); | 
|  | if (errorCode==0) | 
|  | errorCode = umfpack_numeric(a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(), | 
|  | symbolic, &m_numeric, 0, 0); | 
|  |  | 
|  | umfpack_free_symbolic(&symbolic,Scalar()); | 
|  |  | 
|  | m_extractedDataAreDirty = true; | 
|  |  | 
|  | Base::m_succeeded = (errorCode==0); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void SparseLU<MatrixType,UmfPack>::extractData() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) | 
|  | { | 
|  | // get size of the data | 
|  | int lnz, unz, rows, cols, nz_udiag; | 
|  | umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); | 
|  |  | 
|  | // allocate data | 
|  | m_l.resize(rows,std::min(rows,cols)); | 
|  | m_l.resizeNonZeros(lnz); | 
|  |  | 
|  | m_u.resize(std::min(rows,cols),cols); | 
|  | m_u.resizeNonZeros(unz); | 
|  |  | 
|  | m_p.resize(rows); | 
|  | m_q.resize(cols); | 
|  |  | 
|  | // extract | 
|  | umfpack_get_numeric(m_l._outerIndexPtr(), m_l._innerIndexPtr(), m_l._valuePtr(), | 
|  | m_u._outerIndexPtr(), m_u._innerIndexPtr(), m_u._valuePtr(), | 
|  | m_p.data(), m_q.data(), 0, 0, 0, m_numeric); | 
|  |  | 
|  | m_extractedDataAreDirty = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename SparseLU<MatrixType,UmfPack>::Scalar SparseLU<MatrixType,UmfPack>::determinant() const | 
|  | { | 
|  | Scalar det; | 
|  | umfpack_get_determinant(&det, 0, m_numeric, 0); | 
|  | return det; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | template<typename BDerived,typename XDerived> | 
|  | bool SparseLU<MatrixType,UmfPack>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> *x) const | 
|  | { | 
|  | //const int size = m_matrix.rows(); | 
|  | const int rhsCols = b.cols(); | 
|  | //   ei_assert(size==b.rows()); | 
|  | ei_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet"); | 
|  | ei_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet"); | 
|  |  | 
|  | int errorCode; | 
|  | for (int j=0; j<rhsCols; ++j) | 
|  | { | 
|  | errorCode = umfpack_solve(UMFPACK_A, | 
|  | m_matrixRef->_outerIndexPtr(), m_matrixRef->_innerIndexPtr(), m_matrixRef->_valuePtr(), | 
|  | &x->col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0); | 
|  | if (errorCode!=0) | 
|  | return false; | 
|  | } | 
|  | //   errorCode = umfpack_di_solve(UMFPACK_A, | 
|  | //       m_matrixRef._outerIndexPtr(), m_matrixRef._innerIndexPtr(), m_matrixRef._valuePtr(), | 
|  | //       x->derived().data(), b.derived().data(), m_numeric, 0, 0); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_UMFPACKSUPPORT_H |