| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Ilya Baran <ibaran@mit.edu> | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/StdVector> | 
 | #include <unsupported/Eigen/BVH> | 
 |  | 
 | inline double SQR(double x) { return x * x; } | 
 |  | 
 | template<int Dim> | 
 | struct Ball | 
 | { | 
 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(double, Dim) | 
 |  | 
 |   typedef Matrix<double, Dim, 1> VectorType; | 
 |  | 
 |   Ball() {} | 
 |   Ball(const VectorType &c, double r) : center(c), radius(r) {} | 
 |  | 
 |   VectorType center; | 
 |   double radius; | 
 | }; | 
 |  | 
 |  | 
 | template<typename Scalar, int Dim> AlignedBox<Scalar, Dim> ei_bounding_box(const Matrix<Scalar, Dim, 1> &v) { return AlignedBox<Scalar, Dim>(v); } | 
 | template<int Dim> AlignedBox<double, Dim> ei_bounding_box(const Ball<Dim> &b) | 
 | { return AlignedBox<double, Dim>(b.center.array() - b.radius, b.center.array() + b.radius); } | 
 |  | 
 |  | 
 | template<int Dim> | 
 | struct BallPointStuff //this class provides functions to be both an intersector and a minimizer, both for a ball and a point and for two trees | 
 | { | 
 |   typedef double Scalar; | 
 |   typedef Matrix<double, Dim, 1> VectorType; | 
 |   typedef Ball<Dim> BallType; | 
 |   typedef AlignedBox<double, Dim> BoxType; | 
 |  | 
 |   BallPointStuff() : calls(0), count(0) {} | 
 |   BallPointStuff(const VectorType &inP) : p(inP), calls(0), count(0) {} | 
 |  | 
 |  | 
 |   bool intersectVolume(const BoxType &r) { ++calls; return r.contains(p); } | 
 |   bool intersectObject(const BallType &b) { | 
 |     ++calls; | 
 |     if((b.center - p).squaredNorm() < SQR(b.radius)) | 
 |       ++count; | 
 |     return false; //continue | 
 |   } | 
 |  | 
 |   bool intersectVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return !(r1.intersection(r2)).isNull(); } | 
 |   bool intersectVolumeObject(const BoxType &r, const BallType &b) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); } | 
 |   bool intersectObjectVolume(const BallType &b, const BoxType &r) { ++calls; return r.squaredExteriorDistance(b.center) < SQR(b.radius); } | 
 |   bool intersectObjectObject(const BallType &b1, const BallType &b2){ | 
 |     ++calls; | 
 |     if((b1.center - b2.center).norm() < b1.radius + b2.radius) | 
 |       ++count; | 
 |     return false; | 
 |   } | 
 |   bool intersectVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.contains(v); } | 
 |   bool intersectObjectObject(const BallType &b, const VectorType &v){ | 
 |     ++calls; | 
 |     if((b.center - v).squaredNorm() < SQR(b.radius)) | 
 |       ++count; | 
 |     return false; | 
 |   } | 
 |  | 
 |   double minimumOnVolume(const BoxType &r) { ++calls; return r.squaredExteriorDistance(p); } | 
 |   double minimumOnObject(const BallType &b) { ++calls; return std::max(0., (b.center - p).squaredNorm() - SQR(b.radius)); } | 
 |   double minimumOnVolumeVolume(const BoxType &r1, const BoxType &r2) { ++calls; return r1.squaredExteriorDistance(r2); } | 
 |   double minimumOnVolumeObject(const BoxType &r, const BallType &b) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); } | 
 |   double minimumOnObjectVolume(const BallType &b, const BoxType &r) { ++calls; return SQR(std::max(0., r.exteriorDistance(b.center) - b.radius)); } | 
 |   double minimumOnObjectObject(const BallType &b1, const BallType &b2){ ++calls; return SQR(std::max(0., (b1.center - b2.center).norm() - b1.radius - b2.radius)); } | 
 |   double minimumOnVolumeObject(const BoxType &r, const VectorType &v) { ++calls; return r.squaredExteriorDistance(v); } | 
 |   double minimumOnObjectObject(const BallType &b, const VectorType &v){ ++calls; return SQR(std::max(0., (b.center - v).norm() - b.radius)); } | 
 |  | 
 |   VectorType p; | 
 |   int calls; | 
 |   int count; | 
 | }; | 
 |  | 
 |  | 
 | template<int Dim> | 
 | struct TreeTest | 
 | { | 
 |   typedef Matrix<double, Dim, 1> VectorType; | 
 |   typedef std::vector<VectorType, aligned_allocator<VectorType> > VectorTypeList; | 
 |   typedef Ball<Dim> BallType; | 
 |   typedef std::vector<BallType, aligned_allocator<BallType> > BallTypeList; | 
 |   typedef AlignedBox<double, Dim> BoxType; | 
 |  | 
 |   void testIntersect1() | 
 |   { | 
 |     BallTypeList b; | 
 |     for(int i = 0; i < 500; ++i) { | 
 |         b.push_back(BallType(VectorType::Random(), 0.5 * ei_random(0., 1.))); | 
 |     } | 
 |     KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); | 
 |  | 
 |     VectorType pt = VectorType::Random(); | 
 |     BallPointStuff<Dim> i1(pt), i2(pt); | 
 |  | 
 |     for(int i = 0; i < (int)b.size(); ++i) | 
 |       i1.intersectObject(b[i]); | 
 |  | 
 |     BVIntersect(tree, i2); | 
 |  | 
 |     VERIFY(i1.count == i2.count); | 
 |   } | 
 |  | 
 |   void testMinimize1() | 
 |   { | 
 |     BallTypeList b; | 
 |     for(int i = 0; i < 500; ++i) { | 
 |         b.push_back(BallType(VectorType::Random(), 0.01 * ei_random(0., 1.))); | 
 |     } | 
 |     KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); | 
 |  | 
 |     VectorType pt = VectorType::Random(); | 
 |     BallPointStuff<Dim> i1(pt), i2(pt); | 
 |  | 
 |     double m1 = std::numeric_limits<double>::max(), m2 = m1; | 
 |  | 
 |     for(int i = 0; i < (int)b.size(); ++i) | 
 |       m1 = std::min(m1, i1.minimumOnObject(b[i])); | 
 |  | 
 |     m2 = BVMinimize(tree, i2); | 
 |  | 
 |     VERIFY_IS_APPROX(m1, m2); | 
 |   } | 
 |  | 
 |   void testIntersect2() | 
 |   { | 
 |     BallTypeList b; | 
 |     VectorTypeList v; | 
 |  | 
 |     for(int i = 0; i < 50; ++i) { | 
 |         b.push_back(BallType(VectorType::Random(), 0.5 * ei_random(0., 1.))); | 
 |         for(int j = 0; j < 3; ++j) | 
 |             v.push_back(VectorType::Random()); | 
 |     } | 
 |  | 
 |     KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); | 
 |     KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end()); | 
 |  | 
 |     BallPointStuff<Dim> i1, i2; | 
 |  | 
 |     for(int i = 0; i < (int)b.size(); ++i) | 
 |         for(int j = 0; j < (int)v.size(); ++j) | 
 |             i1.intersectObjectObject(b[i], v[j]); | 
 |  | 
 |     BVIntersect(tree, vTree, i2); | 
 |  | 
 |     VERIFY(i1.count == i2.count); | 
 |   } | 
 |  | 
 |   void testMinimize2() | 
 |   { | 
 |     BallTypeList b; | 
 |     VectorTypeList v; | 
 |  | 
 |     for(int i = 0; i < 50; ++i) { | 
 |         b.push_back(BallType(VectorType::Random(), 1e-7 + 1e-6 * ei_random(0., 1.))); | 
 |         for(int j = 0; j < 3; ++j) | 
 |             v.push_back(VectorType::Random()); | 
 |     } | 
 |  | 
 |     KdBVH<double, Dim, BallType> tree(b.begin(), b.end()); | 
 |     KdBVH<double, Dim, VectorType> vTree(v.begin(), v.end()); | 
 |  | 
 |     BallPointStuff<Dim> i1, i2; | 
 |  | 
 |     double m1 = std::numeric_limits<double>::max(), m2 = m1; | 
 |  | 
 |     for(int i = 0; i < (int)b.size(); ++i) | 
 |         for(int j = 0; j < (int)v.size(); ++j) | 
 |             m1 = std::min(m1, i1.minimumOnObjectObject(b[i], v[j])); | 
 |  | 
 |     m2 = BVMinimize(tree, vTree, i2); | 
 |  | 
 |     VERIFY_IS_APPROX(m1, m2); | 
 |   } | 
 | }; | 
 |  | 
 |  | 
 | void test_BVH() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 | #ifdef EIGEN_TEST_PART_1 | 
 |     TreeTest<2> test2; | 
 |     CALL_SUBTEST(test2.testIntersect1()); | 
 |     CALL_SUBTEST(test2.testMinimize1()); | 
 |     CALL_SUBTEST(test2.testIntersect2()); | 
 |     CALL_SUBTEST(test2.testMinimize2()); | 
 | #endif | 
 |  | 
 | #ifdef EIGEN_TEST_PART_2 | 
 |     TreeTest<3> test3; | 
 |     CALL_SUBTEST(test3.testIntersect1()); | 
 |     CALL_SUBTEST(test3.testMinimize1()); | 
 |     CALL_SUBTEST(test3.testIntersect2()); | 
 |     CALL_SUBTEST(test3.testMinimize2()); | 
 | #endif | 
 |  | 
 | #ifdef EIGEN_TEST_PART_3 | 
 |     TreeTest<4> test4; | 
 |     CALL_SUBTEST(test4.testIntersect1()); | 
 |     CALL_SUBTEST(test4.testMinimize1()); | 
 |     CALL_SUBTEST(test4.testIntersect2()); | 
 |     CALL_SUBTEST(test4.testMinimize2()); | 
 | #endif | 
 |   } | 
 | } |