| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. Eigen itself is part of the KDE project. | 
 | // | 
 | // Copyright (C) 2009 Mark Borgerding mark a borgerding net | 
 | // | 
 | // Eigen is free software; you can redistribute it and/or | 
 | // modify it under the terms of the GNU Lesser General Public | 
 | // License as published by the Free Software Foundation; either | 
 | // version 3 of the License, or (at your option) any later version. | 
 | // | 
 | // Alternatively, you can redistribute it and/or | 
 | // modify it under the terms of the GNU General Public License as | 
 | // published by the Free Software Foundation; either version 2 of | 
 | // the License, or (at your option) any later version. | 
 | // | 
 | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
 | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
 | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
 | // GNU General Public License for more details. | 
 | // | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License and a copy of the GNU General Public License along with | 
 | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/FFT> | 
 |  | 
 | template <typename T>  | 
 | std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); } | 
 |  | 
 | using namespace std; | 
 | using namespace Eigen; | 
 |  | 
 | float norm(float x) {return x*x;} | 
 | double norm(double x) {return x*x;} | 
 | long double norm(long double x) {return x*x;} | 
 |  | 
 | template < typename T> | 
 | complex<long double>  promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); } | 
 |  | 
 | complex<long double>  promote(float x) { return complex<long double>( x); } | 
 | complex<long double>  promote(double x) { return complex<long double>( x); } | 
 | complex<long double>  promote(long double x) { return complex<long double>( x); } | 
 |      | 
 |  | 
 |     template <typename VT1,typename VT2> | 
 |     long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf) | 
 |     { | 
 |         long double totalpower=0; | 
 |         long double difpower=0; | 
 |         long double pi = acos((long double)-1 ); | 
 |         for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) { | 
 |             complex<long double> acc = 0; | 
 |             long double phinc = -2.*k0* pi / timebuf.size(); | 
 |             for (size_t k1=0;k1<(size_t)timebuf.size();++k1) { | 
 |                 acc +=  promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) ); | 
 |             } | 
 |             totalpower += norm(acc); | 
 |             complex<long double> x = promote(fftbuf[k0]);  | 
 |             complex<long double> dif = acc - x; | 
 |             difpower += norm(dif); | 
 |             //cerr << k0 << "\t" << acc << "\t" <<  x << "\t" << sqrt(norm(dif)) << endl; | 
 |         } | 
 |         cerr << "rmse:" << sqrt(difpower/totalpower) << endl; | 
 |         return sqrt(difpower/totalpower); | 
 |     } | 
 |  | 
 |     template <typename VT1,typename VT2> | 
 |     long double dif_rmse( const VT1 buf1,const VT2 buf2) | 
 |     { | 
 |         long double totalpower=0; | 
 |         long double difpower=0; | 
 |         size_t n = min( buf1.size(),buf2.size() ); | 
 |         for (size_t k=0;k<n;++k) { | 
 |             totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.; | 
 |             difpower += norm(buf1[k] - buf2[k]); | 
 |         } | 
 |         return sqrt(difpower/totalpower); | 
 |     } | 
 |  | 
 | enum { StdVectorContainer, EigenVectorContainer }; | 
 |  | 
 | template<int Container, typename Scalar> struct VectorType; | 
 |  | 
 | template<typename Scalar> struct VectorType<StdVectorContainer,Scalar> | 
 | { | 
 |   typedef vector<Scalar> type; | 
 | }; | 
 |  | 
 | template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar> | 
 | { | 
 |   typedef Matrix<Scalar,Dynamic,1> type; | 
 | }; | 
 |  | 
 | template <int Container, typename T> | 
 | void test_scalar_generic(int nfft) | 
 | { | 
 |     typedef typename FFT<T>::Complex Complex; | 
 |     typedef typename FFT<T>::Scalar Scalar; | 
 |     typedef typename VectorType<Container,Scalar>::type ScalarVector; | 
 |     typedef typename VectorType<Container,Complex>::type ComplexVector; | 
 |  | 
 |     FFT<T> fft; | 
 |     ScalarVector tbuf(nfft); | 
 |     ComplexVector freqBuf; | 
 |     for (int k=0;k<nfft;++k) | 
 |         tbuf[k]= (T)( rand()/(double)RAND_MAX - .5); | 
 |  | 
 |     // make sure it DOESN'T give the right full spectrum answer | 
 |     // if we've asked for half-spectrum | 
 |     fft.SetFlag(fft.HalfSpectrum ); | 
 |     fft.fwd( freqBuf,tbuf); | 
 |     VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) ); | 
 |     VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>()  );// gross check | 
 |  | 
 |     fft.ClearFlag(fft.HalfSpectrum ); | 
 |     fft.fwd( freqBuf,tbuf); | 
 |     VERIFY( (size_t)freqBuf.size() == (size_t)nfft); | 
 |     VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>()  );// gross check | 
 |  | 
 |     if (nfft&1) | 
 |         return; // odd FFTs get the wrong size inverse FFT | 
 |  | 
 |     ScalarVector tbuf2; | 
 |     fft.inv( tbuf2 , freqBuf); | 
 |     VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>()  );// gross check | 
 |  | 
 |  | 
 |     // verify that the Unscaled flag takes effect | 
 |     ScalarVector tbuf3; | 
 |     fft.SetFlag(fft.Unscaled); | 
 |  | 
 |     fft.inv( tbuf3 , freqBuf); | 
 |  | 
 |     for (int k=0;k<nfft;++k) | 
 |         tbuf3[k] *= T(1./nfft); | 
 |  | 
 |  | 
 |     //for (size_t i=0;i<(size_t) tbuf.size();++i) | 
 |     //    cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " -  in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) <<  endl; | 
 |  | 
 |     VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>()  );// gross check | 
 |  | 
 |     // verify that ClearFlag works | 
 |     fft.ClearFlag(fft.Unscaled); | 
 |     fft.inv( tbuf2 , freqBuf); | 
 |     VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>()  );// gross check | 
 | } | 
 |  | 
 | template <typename T> | 
 | void test_scalar(int nfft) | 
 | { | 
 |   test_scalar_generic<StdVectorContainer,T>(nfft); | 
 |   //test_scalar_generic<EigenVectorContainer,T>(nfft); | 
 | } | 
 |  | 
 |  | 
 | template <int Container, typename T> | 
 | void test_complex_generic(int nfft) | 
 | { | 
 |     typedef typename FFT<T>::Complex Complex; | 
 |     typedef typename VectorType<Container,Complex>::type ComplexVector; | 
 |  | 
 |     FFT<T> fft; | 
 |  | 
 |     ComplexVector inbuf(nfft); | 
 |     ComplexVector outbuf; | 
 |     ComplexVector buf3; | 
 |     for (int k=0;k<nfft;++k) | 
 |         inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) ); | 
 |     fft.fwd( outbuf , inbuf); | 
 |  | 
 |     VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>()  );// gross check | 
 |     fft.inv( buf3 , outbuf); | 
 |  | 
 |     VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check | 
 |  | 
 |     // verify that the Unscaled flag takes effect | 
 |     ComplexVector buf4; | 
 |     fft.SetFlag(fft.Unscaled); | 
 |     fft.inv( buf4 , outbuf); | 
 |     for (int k=0;k<nfft;++k) | 
 |         buf4[k] *= T(1./nfft); | 
 |     VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>()  );// gross check | 
 |  | 
 |     // verify that ClearFlag works | 
 |     fft.ClearFlag(fft.Unscaled); | 
 |     fft.inv( buf3 , outbuf); | 
 |     VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>()  );// gross check | 
 | } | 
 |  | 
 | template <typename T> | 
 | void test_complex(int nfft) | 
 | { | 
 |   test_complex_generic<StdVectorContainer,T>(nfft); | 
 |   test_complex_generic<EigenVectorContainer,T>(nfft); | 
 | } | 
 | /* | 
 | template <typename T,int nrows,int ncols> | 
 | void test_complex2d() | 
 | { | 
 |     typedef typename Eigen::FFT<T>::Complex Complex; | 
 |     FFT<T> fft; | 
 |     Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2; | 
 |  | 
 |     src = Eigen::Matrix<Complex,nrows,ncols>::Random(); | 
 |     //src =  Eigen::Matrix<Complex,nrows,ncols>::Identity(); | 
 |  | 
 |     for (int k=0;k<ncols;k++) { | 
 |         Eigen::Matrix<Complex,nrows,1> tmpOut; | 
 |         fft.fwd( tmpOut,src.col(k) ); | 
 |         dst2.col(k) = tmpOut; | 
 |     } | 
 |  | 
 |     for (int k=0;k<nrows;k++) { | 
 |         Eigen::Matrix<Complex,1,ncols> tmpOut; | 
 |         fft.fwd( tmpOut,  dst2.row(k) ); | 
 |         dst2.row(k) = tmpOut; | 
 |     } | 
 |  | 
 |     fft.fwd2(dst.data(),src.data(),ncols,nrows); | 
 |     fft.inv2(src2.data(),dst.data(),ncols,nrows); | 
 |     VERIFY( (src-src2).norm() < test_precision<T>() ); | 
 |     VERIFY( (dst-dst2).norm() < test_precision<T>() ); | 
 | } | 
 | */ | 
 |  | 
 |  | 
 | void test_return_by_value(int len) | 
 | { | 
 |     VectorXf in; | 
 |     VectorXf in1; | 
 |     in.setRandom( len ); | 
 |     VectorXcf out1,out2; | 
 |     FFT<float> fft; | 
 |  | 
 |     fft.SetFlag(fft.HalfSpectrum ); | 
 |  | 
 |     fft.fwd(out1,in); | 
 |     out2 = fft.fwd(in); | 
 |     VERIFY( (out1-out2).norm() < test_precision<float>() ); | 
 |     in1 = fft.inv(out1); | 
 |     VERIFY( (in1-in).norm() < test_precision<float>() ); | 
 | } | 
 |  | 
 | void test_FFTW() | 
 | { | 
 |     cout << "testing return-by-value\n"; | 
 |     CALL_SUBTEST( test_return_by_value(32) ); | 
 |     cout << "testing complex\n"; | 
 |   //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) ); | 
 |   //CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) ); | 
 |   CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) ); | 
 |   CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) ); | 
 |   CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) ); CALL_SUBTEST( test_complex<long double>(3*8) ); | 
 |   CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) ); CALL_SUBTEST( test_complex<long double>(5*32) ); | 
 |   CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) ); CALL_SUBTEST( test_complex<long double>(2*3*4) ); | 
 |   CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5) ); | 
 |   CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) ); | 
 |  | 
 |     cout << "testing scalar\n"; | 
 |   CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) ); CALL_SUBTEST( test_scalar<long double>(32) ); | 
 |   CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) ); CALL_SUBTEST( test_scalar<long double>(45) ); | 
 |   CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) ); CALL_SUBTEST( test_scalar<long double>(50) ); | 
 |   CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) ); CALL_SUBTEST( test_scalar<long double>(256) ); | 
 |   CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) ); | 
 | } |