|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/MatrixFunctions> | 
|  |  | 
|  | // Variant of VERIFY_IS_APPROX which uses absolute error instead of | 
|  | // relative error. | 
|  | #define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b)) | 
|  |  | 
|  | template<typename Type1, typename Type2> | 
|  | inline bool test_isApprox_abs(const Type1& a, const Type2& b) | 
|  | { | 
|  | return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Returns a matrix with eigenvalues clustered around 0, 1 and 2. | 
|  | template<typename MatrixType> | 
|  | MatrixType randomMatrixWithRealEivals(const typename MatrixType::Index size) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | MatrixType diag = MatrixType::Zero(size, size); | 
|  | for (Index i = 0; i < size; ++i) { | 
|  | diag(i, i) = Scalar(RealScalar(ei_random<int>(0,2))) | 
|  | + ei_random<Scalar>() * Scalar(RealScalar(0.01)); | 
|  | } | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | HouseholderQR<MatrixType> QRofA(A); | 
|  | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int IsComplex = NumTraits<typename ei_traits<MatrixType>::Scalar>::IsComplex> | 
|  | struct randomMatrixWithImagEivals | 
|  | { | 
|  | // Returns a matrix with eigenvalues clustered around 0 and +/- i. | 
|  | static MatrixType run(const typename MatrixType::Index size); | 
|  | }; | 
|  |  | 
|  | // Partial specialization for real matrices | 
|  | template<typename MatrixType> | 
|  | struct randomMatrixWithImagEivals<MatrixType, 0> | 
|  | { | 
|  | static MatrixType run(const typename MatrixType::Index size) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | MatrixType diag = MatrixType::Zero(size, size); | 
|  | Index i = 0; | 
|  | while (i < size) { | 
|  | Index randomInt = ei_random<Index>(-1, 1); | 
|  | if (randomInt == 0 || i == size-1) { | 
|  | diag(i, i) = ei_random<Scalar>() * Scalar(0.01); | 
|  | ++i; | 
|  | } else { | 
|  | Scalar alpha = Scalar(randomInt) + ei_random<Scalar>() * Scalar(0.01); | 
|  | diag(i, i+1) = alpha; | 
|  | diag(i+1, i) = -alpha; | 
|  | i += 2; | 
|  | } | 
|  | } | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | HouseholderQR<MatrixType> QRofA(A); | 
|  | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Partial specialization for complex matrices | 
|  | template<typename MatrixType> | 
|  | struct randomMatrixWithImagEivals<MatrixType, 1> | 
|  | { | 
|  | static MatrixType run(const typename MatrixType::Index size) | 
|  | { | 
|  | typedef typename MatrixType::Index Index; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | const Scalar imagUnit(0, 1); | 
|  | MatrixType diag = MatrixType::Zero(size, size); | 
|  | for (Index i = 0; i < size; ++i) { | 
|  | diag(i, i) = Scalar(RealScalar(ei_random<Index>(-1, 1))) * imagUnit | 
|  | + ei_random<Scalar>() * Scalar(RealScalar(0.01)); | 
|  | } | 
|  | MatrixType A = MatrixType::Random(size, size); | 
|  | HouseholderQR<MatrixType> QRofA(A); | 
|  | return QRofA.householderQ().inverse() * diag * QRofA.householderQ(); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testMatrixExponential(const MatrixType& A) | 
|  | { | 
|  | typedef typename ei_traits<MatrixType>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef std::complex<RealScalar> ComplexScalar; | 
|  |  | 
|  | VERIFY_IS_APPROX(A.exp(), A.matrixFunction(StdStemFunctions<ComplexScalar>::exp)); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testHyperbolicFunctions(const MatrixType& A) | 
|  | { | 
|  | // Need to use absolute error because of possible cancellation when | 
|  | // adding/subtracting expA and expmA. | 
|  | VERIFY_IS_APPROX_ABS(A.sinh(), (A.exp() - (-A).exp()) / 2); | 
|  | VERIFY_IS_APPROX_ABS(A.cosh(), (A.exp() + (-A).exp()) / 2); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testGonioFunctions(const MatrixType& A) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef std::complex<RealScalar> ComplexScalar; | 
|  | typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime, | 
|  | MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix; | 
|  |  | 
|  | ComplexScalar imagUnit(0,1); | 
|  | ComplexScalar two(2,0); | 
|  |  | 
|  | ComplexMatrix Ac = A.template cast<ComplexScalar>(); | 
|  |  | 
|  | ComplexMatrix exp_iA = (imagUnit * Ac).exp(); | 
|  | ComplexMatrix exp_miA = (-imagUnit * Ac).exp(); | 
|  |  | 
|  | ComplexMatrix sinAc = A.sin().template cast<ComplexScalar>(); | 
|  | VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit)); | 
|  |  | 
|  | ComplexMatrix cosAc = A.cos().template cast<ComplexScalar>(); | 
|  | VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testMatrix(const MatrixType& A) | 
|  | { | 
|  | testMatrixExponential(A); | 
|  | testHyperbolicFunctions(A); | 
|  | testGonioFunctions(A); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void testMatrixType(const MatrixType& m) | 
|  | { | 
|  | // Matrices with clustered eigenvalue lead to different code paths | 
|  | // in MatrixFunction.h and are thus useful for testing. | 
|  | typedef typename MatrixType::Index Index; | 
|  |  | 
|  | const Index size = m.rows(); | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | testMatrix(MatrixType::Random(size, size).eval()); | 
|  | testMatrix(randomMatrixWithRealEivals<MatrixType>(size)); | 
|  | testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_matrix_function() | 
|  | { | 
|  | CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); | 
|  | CALL_SUBTEST_2(testMatrixType(Matrix3cf())); | 
|  | CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); | 
|  | CALL_SUBTEST_4(testMatrixType(Matrix2d())); | 
|  | CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); | 
|  | CALL_SUBTEST_6(testMatrixType(Matrix4cd())); | 
|  | CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); | 
|  | } |