|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // Eigen is free software; you can redistribute it and/or | 
|  | // modify it under the terms of the GNU Lesser General Public | 
|  | // License as published by the Free Software Foundation; either | 
|  | // version 3 of the License, or (at your option) any later version. | 
|  | // | 
|  | // Alternatively, you can redistribute it and/or | 
|  | // modify it under the terms of the GNU General Public License as | 
|  | // published by the Free Software Foundation; either version 2 of | 
|  | // the License, or (at your option) any later version. | 
|  | // | 
|  | // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
|  | // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the | 
|  | // GNU General Public License for more details. | 
|  | // | 
|  | // You should have received a copy of the GNU Lesser General Public | 
|  | // License and a copy of the GNU General Public License along with | 
|  | // Eigen. If not, see <http://www.gnu.org/licenses/>. | 
|  |  | 
|  | #include "sparse.h" | 
|  | #include <Eigen/SparseExtra> | 
|  |  | 
|  | template<typename SetterType,typename DenseType, typename Scalar, int Options> | 
|  | bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) | 
|  | { | 
|  | typedef SparseMatrix<Scalar,Options> SparseType; | 
|  | { | 
|  | sm.setZero(); | 
|  | SetterType w(sm); | 
|  | std::vector<Vector2i> remaining = nonzeroCoords; | 
|  | while(!remaining.empty()) | 
|  | { | 
|  | int i = ei_random<int>(0,static_cast<int>(remaining.size())-1); | 
|  | w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); | 
|  | remaining[i] = remaining.back(); | 
|  | remaining.pop_back(); | 
|  | } | 
|  | } | 
|  | return sm.isApprox(ref); | 
|  | } | 
|  |  | 
|  | template<typename SetterType,typename DenseType, typename T> | 
|  | bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) | 
|  | { | 
|  | sm.setZero(); | 
|  | std::vector<Vector2i> remaining = nonzeroCoords; | 
|  | while(!remaining.empty()) | 
|  | { | 
|  | int i = ei_random<int>(0,static_cast<int>(remaining.size())-1); | 
|  | sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); | 
|  | remaining[i] = remaining.back(); | 
|  | remaining.pop_back(); | 
|  | } | 
|  | return sm.isApprox(ref); | 
|  | } | 
|  |  | 
|  | template<typename SparseMatrixType> void sparse_extra(const SparseMatrixType& ref) | 
|  | { | 
|  | typedef typename SparseMatrixType::Index Index; | 
|  | const Index rows = ref.rows(); | 
|  | const Index cols = ref.cols(); | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | enum { Flags = SparseMatrixType::Flags }; | 
|  |  | 
|  | double density = std::max(8./(rows*cols), 0.01); | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  | Scalar eps = 1e-6; | 
|  |  | 
|  | SparseMatrixType m(rows, cols); | 
|  | DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | 
|  | DenseVector vec1 = DenseVector::Random(rows); | 
|  |  | 
|  | std::vector<Vector2i> zeroCoords; | 
|  | std::vector<Vector2i> nonzeroCoords; | 
|  | initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); | 
|  |  | 
|  | if (zeroCoords.size()==0 || nonzeroCoords.size()==0) | 
|  | return; | 
|  |  | 
|  | // test coeff and coeffRef | 
|  | for (int i=0; i<(int)zeroCoords.size(); ++i) | 
|  | { | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); | 
|  | if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) | 
|  | VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); | 
|  | } | 
|  | VERIFY_IS_APPROX(m, refMat); | 
|  |  | 
|  | m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | 
|  | refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | 
|  |  | 
|  | VERIFY_IS_APPROX(m, refMat); | 
|  |  | 
|  | // random setter | 
|  | //   { | 
|  | //     m.setZero(); | 
|  | //     VERIFY_IS_NOT_APPROX(m, refMat); | 
|  | //     SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); | 
|  | //     std::vector<Vector2i> remaining = nonzeroCoords; | 
|  | //     while(!remaining.empty()) | 
|  | //     { | 
|  | //       int i = ei_random<int>(0,remaining.size()-1); | 
|  | //       w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); | 
|  | //       remaining[i] = remaining.back(); | 
|  | //       remaining.pop_back(); | 
|  | //     } | 
|  | //   } | 
|  | //   VERIFY_IS_APPROX(m, refMat); | 
|  |  | 
|  | VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); | 
|  | #ifdef EIGEN_UNORDERED_MAP_SUPPORT | 
|  | VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); | 
|  | #endif | 
|  | #ifdef _DENSE_HASH_MAP_H_ | 
|  | VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); | 
|  | #endif | 
|  | #ifdef _SPARSE_HASH_MAP_H_ | 
|  | VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | // test RandomSetter | 
|  | /*{ | 
|  | SparseMatrixType m1(rows,cols), m2(rows,cols); | 
|  | DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | 
|  | initSparse<Scalar>(density, refM1, m1); | 
|  | { | 
|  | Eigen::RandomSetter<SparseMatrixType > setter(m2); | 
|  | for (int j=0; j<m1.outerSize(); ++j) | 
|  | for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) | 
|  | setter(i.index(), j) = i.value(); | 
|  | } | 
|  | VERIFY_IS_APPROX(m1, m2); | 
|  | }*/ | 
|  |  | 
|  |  | 
|  | } | 
|  |  | 
|  | void test_sparse_extra() | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( sparse_extra(SparseMatrix<double>(8, 8)) ); | 
|  | CALL_SUBTEST_2( sparse_extra(SparseMatrix<std::complex<double> >(16, 16)) ); | 
|  | CALL_SUBTEST_1( sparse_extra(SparseMatrix<double>(33, 33)) ); | 
|  |  | 
|  | CALL_SUBTEST_3( sparse_extra(DynamicSparseMatrix<double>(8, 8)) ); | 
|  | } | 
|  | } |