| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_ARRAY_H |
| #define EIGEN_ARRAY_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| { |
| typedef ArrayXpr XprKind; |
| typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase; |
| }; |
| } |
| |
| /** \class Array |
| * \ingroup Core_Module |
| * |
| * \brief General-purpose arrays with easy API for coefficient-wise operations |
| * |
| * The %Array class is very similar to the Matrix class. It provides |
| * general-purpose one- and two-dimensional arrays. The difference between the |
| * %Array and the %Matrix class is primarily in the API: the API for the |
| * %Array class provides easy access to coefficient-wise operations, while the |
| * API for the %Matrix class provides easy access to linear-algebra |
| * operations. |
| * |
| * See documentation of class Matrix for detailed information on the template parameters |
| * storage layout. |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN. |
| * |
| * \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy |
| */ |
| template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| class Array |
| : public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| { |
| public: |
| |
| typedef PlainObjectBase<Array> Base; |
| EIGEN_DENSE_PUBLIC_INTERFACE(Array) |
| |
| enum { Options = _Options }; |
| typedef typename Base::PlainObject PlainObject; |
| |
| protected: |
| template <typename Derived, typename OtherDerived, bool IsVector> |
| friend struct internal::conservative_resize_like_impl; |
| |
| using Base::m_storage; |
| |
| public: |
| |
| using Base::base; |
| using Base::coeff; |
| using Base::coeffRef; |
| |
| /** |
| * The usage of |
| * using Base::operator=; |
| * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped |
| * the usage of 'using'. This should be done only for operator=. |
| */ |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other) |
| { |
| return Base::operator=(other); |
| } |
| |
| /** Set all the entries to \a value. |
| * \sa DenseBase::setConstant(), DenseBase::fill() |
| */ |
| /* This overload is needed because the usage of |
| * using Base::operator=; |
| * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped |
| * the usage of 'using'. This should be done only for operator=. |
| */ |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array& operator=(const Scalar &value) |
| { |
| Base::setConstant(value); |
| return *this; |
| } |
| |
| /** Copies the value of the expression \a other into \c *this with automatic resizing. |
| * |
| * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), |
| * it will be initialized. |
| * |
| * Note that copying a row-vector into a vector (and conversely) is allowed. |
| * The resizing, if any, is then done in the appropriate way so that row-vectors |
| * remain row-vectors and vectors remain vectors. |
| */ |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array& operator=(const DenseBase<OtherDerived>& other) |
| { |
| return Base::_set(other); |
| } |
| |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array& operator=(const Array& other) |
| { |
| return Base::_set(other); |
| } |
| |
| /** Default constructor. |
| * |
| * For fixed-size matrices, does nothing. |
| * |
| * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix |
| * is called a null matrix. This constructor is the unique way to create null matrices: resizing |
| * a matrix to 0 is not supported. |
| * |
| * \sa resize(Index,Index) |
| */ |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array() : Base() |
| { |
| Base::_check_template_params(); |
| EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| // FIXME is it still needed ?? |
| /** \internal */ |
| EIGEN_DEVICE_FUNC |
| Array(internal::constructor_without_unaligned_array_assert) |
| : Base(internal::constructor_without_unaligned_array_assert()) |
| { |
| Base::_check_template_params(); |
| EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| } |
| #endif |
| |
| #ifdef EIGEN_HAVE_RVALUE_REFERENCES |
| EIGEN_DEVICE_FUNC |
| Array(Array&& other) |
| : Base(std::move(other)) |
| { |
| Base::_check_template_params(); |
| if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic) |
| Base::_set_noalias(other); |
| } |
| EIGEN_DEVICE_FUNC |
| Array& operator=(Array&& other) |
| { |
| other.swap(*this); |
| return *this; |
| } |
| #endif |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename T> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE explicit Array(const T& x) |
| { |
| Base::_check_template_params(); |
| Base::template _init1<T>(x); |
| } |
| |
| template<typename T0, typename T1> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1) |
| { |
| Base::_check_template_params(); |
| this->template _init2<T0,T1>(val0, val1); |
| } |
| #else |
| /** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */ |
| EIGEN_DEVICE_FUNC explicit Array(const Scalar *data); |
| /** Constructs a vector or row-vector with given dimension. \only_for_vectors |
| * |
| * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, |
| * it is redundant to pass the dimension here, so it makes more sense to use the default |
| * constructor Array() instead. |
| */ |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE explicit Array(Index dim); |
| /** constructs an initialized 1x1 Array with the given coefficient */ |
| Array(const Scalar& value); |
| /** constructs an uninitialized array with \a rows rows and \a cols columns. |
| * |
| * This is useful for dynamic-size arrays. For fixed-size arrays, |
| * it is redundant to pass these parameters, so one should use the default constructor |
| * Array() instead. */ |
| Array(Index rows, Index cols); |
| /** constructs an initialized 2D vector with given coefficients */ |
| Array(const Scalar& val0, const Scalar& val1); |
| #endif |
| |
| /** constructs an initialized 3D vector with given coefficients */ |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2) |
| { |
| Base::_check_template_params(); |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3) |
| m_storage.data()[0] = val0; |
| m_storage.data()[1] = val1; |
| m_storage.data()[2] = val2; |
| } |
| /** constructs an initialized 4D vector with given coefficients */ |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3) |
| { |
| Base::_check_template_params(); |
| EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4) |
| m_storage.data()[0] = val0; |
| m_storage.data()[1] = val1; |
| m_storage.data()[2] = val2; |
| m_storage.data()[3] = val3; |
| } |
| |
| /** Copy constructor */ |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array(const Array& other) |
| : Base(other) |
| { } |
| |
| /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */ |
| template<typename OtherDerived> |
| EIGEN_DEVICE_FUNC |
| EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other) |
| : Base(other.derived()) |
| { } |
| |
| EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; } |
| EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); } |
| |
| #ifdef EIGEN_ARRAY_PLUGIN |
| #include EIGEN_ARRAY_PLUGIN |
| #endif |
| |
| private: |
| |
| template<typename MatrixType, typename OtherDerived, bool SwapPointers> |
| friend struct internal::matrix_swap_impl; |
| }; |
| |
| /** \defgroup arraytypedefs Global array typedefs |
| * \ingroup Core_Module |
| * |
| * Eigen defines several typedef shortcuts for most common 1D and 2D array types. |
| * |
| * The general patterns are the following: |
| * |
| * \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, |
| * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd |
| * for complex double. |
| * |
| * For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats. |
| * |
| * There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is |
| * a fixed-size 1D array of 4 complex floats. |
| * |
| * \sa class Array |
| */ |
| |
| #define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ |
| /** \ingroup arraytypedefs */ \ |
| typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \ |
| /** \ingroup arraytypedefs */ \ |
| typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ |
| /** \ingroup arraytypedefs */ \ |
| typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \ |
| /** \ingroup arraytypedefs */ \ |
| typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix; |
| |
| #define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ |
| EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \ |
| EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \ |
| EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \ |
| EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ |
| EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ |
| EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ |
| EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4) |
| |
| EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i) |
| EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f) |
| EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d) |
| EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf) |
| EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd) |
| |
| #undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES |
| #undef EIGEN_MAKE_ARRAY_TYPEDEFS |
| |
| #undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE |
| |
| #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ |
| using Eigen::Matrix##SizeSuffix##TypeSuffix; \ |
| using Eigen::Vector##SizeSuffix##TypeSuffix; \ |
| using Eigen::RowVector##SizeSuffix##TypeSuffix; |
| |
| #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ |
| |
| #define EIGEN_USING_ARRAY_TYPEDEFS \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \ |
| EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd) |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_ARRAY_H |