| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_SPARSEVECTOR_H |
| #define EIGEN_SPARSEVECTOR_H |
| |
| /** \class SparseVector |
| * |
| * \brief a sparse vector class |
| * |
| * \param _Scalar the scalar type, i.e. the type of the coefficients |
| * |
| * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. |
| * |
| */ |
| template<typename _Scalar, int _Flags> |
| struct ei_traits<SparseVector<_Scalar, _Flags> > |
| { |
| typedef _Scalar Scalar; |
| enum { |
| IsColVector = _Flags & RowMajorBit ? 0 : 1, |
| |
| RowsAtCompileTime = IsColVector ? Dynamic : 1, |
| ColsAtCompileTime = IsColVector ? 1 : Dynamic, |
| MaxRowsAtCompileTime = RowsAtCompileTime, |
| MaxColsAtCompileTime = ColsAtCompileTime, |
| Flags = SparseBit | _Flags, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost, |
| SupportedAccessPatterns = FullyCoherentAccessPattern |
| }; |
| }; |
| |
| |
| |
| template<typename _Scalar, int _Flags> |
| class SparseVector |
| : public SparseMatrixBase<SparseVector<_Scalar, _Flags> > |
| { |
| public: |
| EIGEN_GENERIC_PUBLIC_INTERFACE(SparseVector) |
| |
| protected: |
| public: |
| |
| typedef SparseMatrixBase<SparseVector> SparseBase; |
| enum { |
| IsColVector = ei_traits<SparseVector>::IsColVector |
| }; |
| |
| SparseArray<Scalar> m_data; |
| int m_size; |
| |
| |
| public: |
| |
| inline int rows() const { return IsColVector ? m_size : 1; } |
| inline int cols() const { return IsColVector ? 1 : m_size; } |
| inline int innerSize() const { return m_size; } |
| inline int outerSize() const { return 1; } |
| inline int innerNonZeros(int j) const { ei_assert(j==0); return m_size; } |
| |
| inline const Scalar* _valuePtr() const { return &m_data.value(0); } |
| inline Scalar* _valuePtr() { return &m_data.value(0); } |
| |
| inline const int* _innerIndexPtr() const { return &m_data.index(0); } |
| inline int* _innerIndexPtr() { return &m_data.index(0); } |
| |
| inline Scalar coeff(int row, int col) const |
| { |
| ei_assert((IsColVector ? col : row)==0); |
| return coeff(IsColVector ? row : col); |
| } |
| inline Scalar coeff(int i) const |
| { |
| int start = 0; |
| int end = m_data.size(); |
| if (start==end) |
| return Scalar(0); |
| else if (end>0 && i==m_data.index(end-1)) |
| return m_data.value(end-1); |
| // ^^ optimization: let's first check if it is the last coefficient |
| // (very common in high level algorithms) |
| |
| // TODO move this search to ScalarArray |
| const int* r = std::lower_bound(&m_data.index(start),&m_data.index(end-1),i); |
| const int id = r-&m_data.index(0); |
| return ((*r==i) && (id<end)) ? m_data.value(id) : Scalar(0); |
| } |
| |
| inline Scalar& coeffRef(int row, int col) |
| { |
| ei_assert((IsColVector ? col : row)==0); |
| return coeff(IsColVector ? row : col); |
| } |
| |
| inline Scalar& coeffRef(int i) |
| { |
| int start = 0; |
| int end = m_data.size(); |
| ei_assert(end>=start && "you probably called coeffRef on a non finalized vector"); |
| ei_assert(end>start && "coeffRef cannot be called on a zero coefficient"); |
| int* r = std::lower_bound(&m_data.index(start),&m_data.index(end),i); |
| const int id = r-&m_data.index(0); |
| ei_assert((*r==i) && (id<end) && "coeffRef cannot be called on a zero coefficient"); |
| return m_data.value(id); |
| } |
| |
| public: |
| |
| class InnerIterator; |
| |
| inline void setZero() { m_data.clear(); } |
| |
| /** \returns the number of non zero coefficients */ |
| inline int nonZeros() const { return m_data.size(); } |
| |
| /** |
| */ |
| inline void reserve(int reserveSize) { m_data.reserve(reserveSize); } |
| |
| /** |
| */ |
| inline Scalar& fill(int i) |
| { |
| m_data.append(0, i); |
| return m_data.value(m_data.size()-1); |
| } |
| |
| /** Like fill() but with random coordinates. |
| */ |
| inline Scalar& fillrand(int i) |
| { |
| int startId = 0; |
| int id = m_data.size() - 1; |
| m_data.resize(id+2); |
| |
| while ( (id >= startId) && (m_data.index(id) > i) ) |
| { |
| m_data.index(id+1) = m_data.index(id); |
| m_data.value(id+1) = m_data.value(id); |
| --id; |
| } |
| m_data.index(id+1) = i; |
| m_data.value(id+1) = 0; |
| return m_data.value(id+1); |
| } |
| |
| void resize(int newSize) |
| { |
| m_size = newSize; |
| m_data.clear(); |
| } |
| |
| void resizeNonZeros(int size) { m_data.resize(size); } |
| |
| inline SparseVector() : m_size(0) { resize(0, 0); } |
| |
| inline SparseVector(int size) : m_size(0) { resize(size); } |
| |
| template<typename OtherDerived> |
| inline SparseVector(const MatrixBase<OtherDerived>& other) |
| : m_size(0) |
| { |
| *this = other.derived(); |
| } |
| |
| inline SparseVector(const SparseVector& other) |
| : m_size(0) |
| { |
| *this = other.derived(); |
| } |
| |
| inline void swap(SparseVector& other) |
| { |
| std::swap(m_size, other.m_size); |
| m_data.swap(other.m_data); |
| } |
| |
| inline SparseVector& operator=(const SparseVector& other) |
| { |
| if (other.isRValue()) |
| { |
| swap(other.const_cast_derived()); |
| } |
| else |
| { |
| resize(other.size()); |
| m_data = other.m_data; |
| } |
| return *this; |
| } |
| |
| // template<typename OtherDerived> |
| // inline SparseVector& operator=(const MatrixBase<OtherDerived>& other) |
| // { |
| // const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); |
| // if (needToTranspose) |
| // { |
| // // two passes algorithm: |
| // // 1 - compute the number of coeffs per dest inner vector |
| // // 2 - do the actual copy/eval |
| // // Since each coeff of the rhs has to be evaluated twice, let's evauluate it if needed |
| // typedef typename ei_nested<OtherDerived,2>::type OtherCopy; |
| // OtherCopy otherCopy(other.derived()); |
| // typedef typename ei_cleantype<OtherCopy>::type _OtherCopy; |
| // |
| // resize(other.rows(), other.cols()); |
| // Eigen::Map<VectorXi>(m_outerIndex,outerSize()).setZero(); |
| // // pass 1 |
| // // FIXME the above copy could be merged with that pass |
| // for (int j=0; j<otherCopy.outerSize(); ++j) |
| // for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) |
| // ++m_outerIndex[it.index()]; |
| // |
| // // prefix sum |
| // int count = 0; |
| // VectorXi positions(outerSize()); |
| // for (int j=0; j<outerSize(); ++j) |
| // { |
| // int tmp = m_outerIndex[j]; |
| // m_outerIndex[j] = count; |
| // positions[j] = count; |
| // count += tmp; |
| // } |
| // m_outerIndex[outerSize()] = count; |
| // // alloc |
| // m_data.resize(count); |
| // // pass 2 |
| // for (int j=0; j<otherCopy.outerSize(); ++j) |
| // for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) |
| // { |
| // int pos = positions[it.index()]++; |
| // m_data.index(pos) = j; |
| // m_data.value(pos) = it.value(); |
| // } |
| // |
| // return *this; |
| // } |
| // else |
| // { |
| // // there is no special optimization |
| // return SparseMatrixBase<SparseMatrix>::operator=(other.derived()); |
| // } |
| // } |
| |
| friend std::ostream & operator << (std::ostream & s, const SparseVector& m) |
| { |
| for (unsigned int i=0; i<m.nonZeros(); ++i) |
| s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; |
| s << std::endl; |
| return s; |
| } |
| |
| // this specialized version does not seems to be faster |
| // Scalar dot(const SparseVector& other) const |
| // { |
| // int i=0, j=0; |
| // Scalar res = 0; |
| // asm("#begindot"); |
| // while (i<nonZeros() && j<other.nonZeros()) |
| // { |
| // if (m_data.index(i)==other.m_data.index(j)) |
| // { |
| // res += m_data.value(i) * ei_conj(other.m_data.value(j)); |
| // ++i; ++j; |
| // } |
| // else if (m_data.index(i)<other.m_data.index(j)) |
| // ++i; |
| // else |
| // ++j; |
| // } |
| // asm("#enddot"); |
| // return res; |
| // } |
| |
| /** Destructor */ |
| inline ~SparseVector() {} |
| }; |
| |
| template<typename Scalar, int _Flags> |
| class SparseVector<Scalar,_Flags>::InnerIterator |
| { |
| public: |
| InnerIterator(const SparseVector& vec, int outer=0) |
| : m_vector(vec), m_id(0), m_end(vec.nonZeros()) |
| { |
| ei_assert(outer==0); |
| } |
| |
| template<unsigned int Added, unsigned int Removed> |
| InnerIterator(const Flagged<SparseVector,Added,Removed>& vec, int outer) |
| : m_vector(vec._expression()), m_id(0), m_end(m_vector.nonZeros()) |
| {} |
| |
| inline InnerIterator& operator++() { m_id++; return *this; } |
| |
| inline Scalar value() const { return m_vector.m_data.value(m_id); } |
| |
| inline int index() const { return m_vector.m_data.index(m_id); } |
| |
| inline operator bool() const { return (m_id < m_end); } |
| |
| protected: |
| const SparseVector& m_vector; |
| int m_id; |
| const int m_end; |
| }; |
| |
| #endif // EIGEN_SPARSEVECTOR_H |