| #ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |
| #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |
| |
| typedef int TensorIndex; |
| #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| |
| #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor" |
| #include "testing/base/public/benchmark.h" |
| |
| using Eigen::Tensor; |
| using Eigen::TensorMap; |
| |
| |
| // TODO(bsteiner): also templatize on the input type since we have users |
| // for int8 as well as floats. |
| template <typename Device> class BenchmarkSuite { |
| public: |
| BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) |
| : m_(m), k_(k), n_(n), device_(device) { |
| initialize(); |
| } |
| |
| BenchmarkSuite(const Device& device, size_t m) |
| : m_(m), k_(m), n_(m), device_(device) { |
| initialize(); |
| } |
| |
| ~BenchmarkSuite() { |
| device_.deallocate(a_); |
| device_.deallocate(b_); |
| device_.deallocate(c_); |
| } |
| |
| void memcpy(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| device_.memcpy(c_, a_, m_ * m_ * sizeof(float)); |
| } |
| // Record the number of values copied per second |
| finalizeBenchmark(m_ * m_ * num_iters); |
| } |
| |
| void random(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| const Eigen::array<TensorIndex, 2> sizes(m_, m_); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = C.random(); |
| } |
| // Record the number of random numbers generated per second |
| finalizeBenchmark(m_ * m_ * num_iters); |
| } |
| |
| void slicing(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| const Eigen::array<TensorIndex, 2> sizes(m_, m_); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| const Eigen::DSizes<TensorIndex, 2> quarter_sizes(Eigen::array<TensorIndex, 2>(m_/2, m_/2)); |
| const Eigen::DSizes<TensorIndex, 2> first_quadrant(Eigen::array<TensorIndex, 2>(0, 0)); |
| const Eigen::DSizes<TensorIndex, 2> second_quadrant(Eigen::array<TensorIndex, 2>(0, m_/2)); |
| const Eigen::DSizes<TensorIndex, 2> third_quadrant(Eigen::array<TensorIndex, 2>(m_/2, 0)); |
| const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(Eigen::array<TensorIndex, 2>(m_/2, m_/2)); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.slice(first_quadrant, quarter_sizes).device(device_) = |
| A.slice(first_quadrant, quarter_sizes); |
| C.slice(second_quadrant, quarter_sizes).device(device_) = |
| B.slice(second_quadrant, quarter_sizes); |
| C.slice(third_quadrant, quarter_sizes).device(device_) = |
| A.slice(third_quadrant, quarter_sizes); |
| C.slice(fourth_quadrant, quarter_sizes).device(device_) = |
| B.slice(fourth_quadrant, quarter_sizes); |
| } |
| // Record the number of values copied from the rhs slice to the lhs slice |
| // each second |
| finalizeBenchmark(m_ * m_ * num_iters); |
| } |
| |
| void shuffling(int num_iters) { |
| eigen_assert(m_ == n_); |
| const Eigen::array<TensorIndex, 2> size_a(m_, k_); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); |
| const Eigen::array<TensorIndex, 2> size_b(k_, m_); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b); |
| |
| const Eigen::array<int, 2> shuffle(1, 0); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| B.device(device_) = A.shuffle(shuffle); |
| } |
| // Record the number of values shuffled from A and copied to B each second |
| finalizeBenchmark(m_ * k_ * num_iters); |
| } |
| |
| void padding(int num_iters) { |
| eigen_assert(m_ == k_); |
| const Eigen::array<TensorIndex, 2> size_a(m_, k_-3); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); |
| const Eigen::array<TensorIndex, 2> size_b(k_, m_); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b); |
| |
| Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings; |
| paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0); |
| paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| B.device(device_) = A.pad(paddings); |
| } |
| // Record the number of values copied from the padded tensor A each second |
| finalizeBenchmark(m_ * k_ * num_iters); |
| } |
| |
| void striding(int num_iters) { |
| eigen_assert(m_ == k_); |
| const Eigen::array<TensorIndex, 2> size_a(m_, k_); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); |
| const Eigen::array<TensorIndex, 2> size_b(m_, k_ / 2); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b); |
| |
| const Eigen::array<TensorIndex, 2> strides(1, 2); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| B.device(device_) = A.stride(strides); |
| } |
| // Record the number of values copied from the padded tensor A each second |
| finalizeBenchmark(m_ * k_ * num_iters); |
| } |
| |
| void broadcasting(int num_iters) { |
| const Eigen::array<TensorIndex, 2> size_a(m_, 1); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); |
| const Eigen::array<TensorIndex, 2> size_c(m_, n_); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, size_c); |
| |
| #if defined(__CUDACC__) |
| // nvcc doesn't support cxx11 |
| const Eigen::array<int, 2> broadcast(1, n_); |
| #else |
| // Take advantage of cxx11 to give the compiler information it can use to |
| // optimize the code. |
| Eigen::IndexList<Eigen::type2index<1>, int> broadcast; |
| broadcast.set(1, n_); |
| #endif |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.broadcast(broadcast); |
| } |
| // Record the number of values broadcasted from A and copied to C each second |
| finalizeBenchmark(m_ * n_ * num_iters); |
| } |
| |
| void coeffWiseOp(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| const Eigen::array<TensorIndex, 2> sizes(m_, m_); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A * A.constant(3.14) + B * B.constant(2.7); |
| } |
| // Record the number of FLOP executed per second (2 multiplications and |
| // 1 addition per value) |
| finalizeBenchmark(3 * m_ * m_ * num_iters); |
| } |
| |
| void algebraicFunc(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| const Eigen::array<TensorIndex, 2> sizes(m_, m_); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); |
| } |
| // Record the number of FLOP executed per second (assuming one operation |
| // per value) |
| finalizeBenchmark(m_ * m_ * num_iters); |
| } |
| |
| void transcendentalFunc(int num_iters) { |
| eigen_assert(m_ == k_ && k_ == n_); |
| const Eigen::array<TensorIndex, 2> sizes(m_, m_); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.exp() + B.log(); |
| } |
| // Record the number of FLOP executed per second (assuming one operation |
| // per value) |
| finalizeBenchmark(m_ * m_ * num_iters); |
| } |
| |
| // Simple reduction |
| void reduction(int num_iters) { |
| const Eigen::array<TensorIndex, 2> input_size(k_, n_); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, input_size); |
| const Eigen::array<TensorIndex, 1> output_size(n_); |
| TensorMap<Tensor<float, 1>, Eigen::Aligned> C(c_, output_size); |
| |
| const Eigen::array<TensorIndex, 1> sum_along_dim(0); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = B.sum(sum_along_dim); |
| } |
| // Record the number of FLOP executed per second (assuming one operation |
| // per value) |
| finalizeBenchmark(m_ * m_ * num_iters); |
| } |
| |
| // do a contraction which is equivalent to a matrix multiplication |
| void contraction(int num_iters) { |
| const Eigen::array<TensorIndex, 2> sizeA(m_, k_); |
| const Eigen::array<TensorIndex, 2> sizeB(k_, n_); |
| const Eigen::array<TensorIndex, 2> sizeC(m_, n_); |
| |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizeA); |
| const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizeB); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizeC); |
| |
| typedef typename Tensor<float, 2>::DimensionPair DimPair; |
| const Eigen::array<DimPair, 1> dims(DimPair(1, 0)); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.contract(B, dims); |
| } |
| // Record the number of FLOP executed per second (size_ multiplications and |
| // additions for each value in the resulting tensor) |
| finalizeBenchmark(static_cast<int64>(2) * m_ * n_ * k_ * num_iters); |
| } |
| |
| void convolution(int num_iters, int kernel_x, int kernel_y) { |
| const Eigen::array<TensorIndex, 2> input_sizes(m_, n_); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, input_sizes); |
| const Eigen::array<TensorIndex, 2> kernel_sizes(kernel_x, kernel_y); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, kernel_sizes); |
| const Eigen::array<TensorIndex, 2> result_sizes( |
| m_ - kernel_x + 1, n_ - kernel_y + 1); |
| TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, result_sizes); |
| Eigen::array<Tensor<float, 2>::Index, 2> dims(0, 1); |
| |
| StartBenchmarkTiming(); |
| for (int iter = 0; iter < num_iters; ++iter) { |
| C.device(device_) = A.convolve(B, dims); |
| } |
| // Record the number of FLOP executed per second (kernel_size |
| // multiplications and additions for each value in the resulting tensor) |
| finalizeBenchmark( |
| (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * 2 * num_iters); |
| } |
| |
| private: |
| void initialize() { |
| a_ = (float *) device_.allocate(m_ * k_ * sizeof(float)); |
| b_ = (float *) device_.allocate(k_ * n_ * sizeof(float)); |
| c_ = (float *) device_.allocate(m_ * n_ * sizeof(float)); |
| |
| // Initialize the content of the memory pools to prevent asan from |
| // complaining. |
| device_.memset(a_, 12, m_ * k_ * sizeof(float)); |
| device_.memset(b_, 23, k_ * n_ * sizeof(float)); |
| device_.memset(c_, 31, m_ * n_ * sizeof(float)); |
| |
| BenchmarkUseRealTime(); |
| } |
| |
| inline void finalizeBenchmark(int64 num_items) { |
| #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) |
| if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { |
| device_.synchronize(); |
| } |
| #endif |
| StopBenchmarkTiming(); |
| SetBenchmarkItemsProcessed(num_items); |
| } |
| |
| |
| size_t m_; |
| size_t k_; |
| size_t n_; |
| float* a_; |
| float* b_; |
| float* c_; |
| Device device_; |
| }; |
| #endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |