blob: 895484166fce0ced847af33ceeb73d3a4a7e6985 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H
// IWYU pragma: private
#include "./InternalHeaderCheck.h"
namespace Eigen {
// This implementation is based on Assign.h
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
// copy_using_evaluator_traits is based on assign_traits
template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc, int MaxPacketSize = -1>
struct copy_using_evaluator_traits {
typedef typename DstEvaluator::XprType Dst;
typedef typename Dst::Scalar DstScalar;
enum { DstFlags = DstEvaluator::Flags, SrcFlags = SrcEvaluator::Flags };
public:
enum {
DstAlignment = DstEvaluator::Alignment,
SrcAlignment = SrcEvaluator::Alignment,
DstHasDirectAccess = (DstFlags & DirectAccessBit) == DirectAccessBit,
JointAlignment = plain_enum_min(DstAlignment, SrcAlignment)
};
private:
enum {
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(DstFlags) & RowMajorBit ? int(Dst::ColsAtCompileTime)
: int(Dst::RowsAtCompileTime),
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
: int(DstFlags) & RowMajorBit ? int(Dst::MaxColsAtCompileTime)
: int(Dst::MaxRowsAtCompileTime),
RestrictedInnerSize = min_size_prefer_fixed(InnerSize, MaxPacketSize),
RestrictedLinearSize = min_size_prefer_fixed(Dst::SizeAtCompileTime, MaxPacketSize),
OuterStride = int(outer_stride_at_compile_time<Dst>::ret),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime
};
// TODO distinguish between linear traversal and inner-traversals
typedef typename find_best_packet<DstScalar, RestrictedLinearSize>::type LinearPacketType;
typedef typename find_best_packet<DstScalar, RestrictedInnerSize>::type InnerPacketType;
enum {
LinearPacketSize = unpacket_traits<LinearPacketType>::size,
InnerPacketSize = unpacket_traits<InnerPacketType>::size
};
public:
enum {
LinearRequiredAlignment = unpacket_traits<LinearPacketType>::alignment,
InnerRequiredAlignment = unpacket_traits<InnerPacketType>::alignment
};
private:
enum {
DstIsRowMajor = DstFlags & RowMajorBit,
SrcIsRowMajor = SrcFlags & RowMajorBit,
StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)),
MightVectorize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit) &&
bool(functor_traits<AssignFunc>::PacketAccess),
MayInnerVectorize = MightVectorize && int(InnerSize) != Dynamic && int(InnerSize) % int(InnerPacketSize) == 0 &&
int(OuterStride) != Dynamic && int(OuterStride) % int(InnerPacketSize) == 0 &&
(EIGEN_UNALIGNED_VECTORIZE || int(JointAlignment) >= int(InnerRequiredAlignment)),
MayLinearize = bool(StorageOrdersAgree) && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
MayLinearVectorize = bool(MightVectorize) && bool(MayLinearize) && bool(DstHasDirectAccess) &&
(EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment) >= int(LinearRequiredAlignment)) ||
MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = bool(MightVectorize) && bool(DstHasDirectAccess) &&
(int(InnerMaxSize) == Dynamic ||
int(InnerMaxSize) >= (EIGEN_UNALIGNED_VECTORIZE ? InnerPacketSize : (3 * InnerPacketSize)))
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix
However, with EIGEN_UNALIGNED_VECTORIZE and unrolling, slice vectorization is still worth it */
};
public:
enum {
Traversal = int(Dst::SizeAtCompileTime) == 0
? int(AllAtOnceTraversal) // If compile-size is zero, traversing will fail at compile-time.
: (int(MayLinearVectorize) && (LinearPacketSize > InnerPacketSize)) ? int(LinearVectorizedTraversal)
: int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal || int(Traversal) == LinearVectorizedTraversal ||
int(Traversal) == SliceVectorizedTraversal
};
typedef std::conditional_t<int(Traversal) == LinearVectorizedTraversal, LinearPacketType, InnerPacketType> PacketType;
private:
enum {
ActualPacketSize = int(Traversal) == LinearVectorizedTraversal ? LinearPacketSize
: Vectorized ? InnerPacketSize
: 1,
UnrollingLimit = EIGEN_UNROLLING_LIMIT * ActualPacketSize,
MayUnrollCompletely =
int(Dst::SizeAtCompileTime) != Dynamic &&
int(Dst::SizeAtCompileTime) * (int(DstEvaluator::CoeffReadCost) + int(SrcEvaluator::CoeffReadCost)) <=
int(UnrollingLimit),
MayUnrollInner =
int(InnerSize) != Dynamic &&
int(InnerSize) * (int(DstEvaluator::CoeffReadCost) + int(SrcEvaluator::CoeffReadCost)) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling))
: int(Traversal) == int(LinearVectorizedTraversal)
? (bool(MayUnrollCompletely) &&
(EIGEN_UNALIGNED_VECTORIZE || (int(DstAlignment) >= int(LinearRequiredAlignment)))
? int(CompleteUnrolling)
: int(NoUnrolling))
: int(Traversal) == int(LinearTraversal)
? (bool(MayUnrollCompletely) ? int(CompleteUnrolling) : int(NoUnrolling))
#if EIGEN_UNALIGNED_VECTORIZE
: int(Traversal) == int(SliceVectorizedTraversal)
? (bool(MayUnrollInner) ? int(InnerUnrolling) : int(NoUnrolling))
#endif
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug() {
std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
std::cerr.setf(std::ios::hex, std::ios::basefield);
std::cerr << "DstFlags"
<< " = " << DstFlags << " (" << demangle_flags(DstFlags) << " )" << std::endl;
std::cerr << "SrcFlags"
<< " = " << SrcFlags << " (" << demangle_flags(SrcFlags) << " )" << std::endl;
std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(DstAlignment)
EIGEN_DEBUG_VAR(SrcAlignment)
EIGEN_DEBUG_VAR(LinearRequiredAlignment)
EIGEN_DEBUG_VAR(InnerRequiredAlignment)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(LinearPacketSize)
EIGEN_DEBUG_VAR(InnerPacketSize)
EIGEN_DEBUG_VAR(ActualPacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
std::cerr << "Traversal"
<< " = " << Traversal << " (" << demangle_traversal(Traversal) << ")" << std::endl;
EIGEN_DEBUG_VAR(SrcEvaluator::CoeffReadCost)
EIGEN_DEBUG_VAR(DstEvaluator::CoeffReadCost)
EIGEN_DEBUG_VAR(Dst::SizeAtCompileTime)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
std::cerr << "Unrolling"
<< " = " << Unrolling << " (" << demangle_unrolling(Unrolling) << ")" << std::endl;
std::cerr << std::endl;
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template <typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling {
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
enum { outer = Index / DstXprType::InnerSizeAtCompileTime, inner = Index % DstXprType::InnerSizeAtCompileTime };
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
kernel.assignCoeffByOuterInner(outer, inner);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index + 1, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) {}
};
template <typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel, Index outer) {
kernel.assignCoeffByOuterInner(outer, Index_);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index_ + 1, Stop>::run(kernel, outer);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) {}
};
/***********************
*** Linear traversal ***
***********************/
template <typename Kernel, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
kernel.assignCoeff(Index);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index + 1, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) {}
};
/**************************
*** Inner vectorization ***
**************************/
template <typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling {
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
SrcAlignment = Kernel::AssignmentTraits::SrcAlignment,
DstAlignment = Kernel::AssignmentTraits::DstAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
enum { NextIndex = Index + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) {}
};
template <typename Kernel, int Index_, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling {
typedef typename Kernel::PacketType PacketType;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel, Index outer) {
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, Index_);
enum { NextIndex = Index_ + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop, SrcAlignment, DstAlignment>::run(kernel,
outer);
}
};
template <typename Kernel, int Stop, int SrcAlignment, int DstAlignment>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop, SrcAlignment, DstAlignment> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) {}
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
// dense_assignment_loop is based on assign_impl
template <typename Kernel, int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop;
/************************
***** Special Cases *****
************************/
// Zero-sized assignment is a no-op.
template <typename Kernel, int Unrolling>
struct dense_assignment_loop<Kernel, AllAtOnceTraversal, Unrolling> {
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE EIGEN_CONSTEXPR run(Kernel& /*kernel*/) {
EIGEN_STATIC_ASSERT(int(Kernel::DstEvaluatorType::XprType::SizeAtCompileTime) == 0,
EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT)
}
};
/************************
*** Default traversal ***
************************/
template <typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling> {
EIGEN_DEVICE_FUNC static void EIGEN_STRONG_INLINE run(Kernel& kernel) {
for (Index outer = 0; outer < kernel.outerSize(); ++outer) {
for (Index inner = 0; inner < kernel.innerSize(); ++inner) {
kernel.assignCoeffByOuterInner(outer, inner);
}
}
}
};
template <typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, CompleteUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template <typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, InnerUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
const Index outerSize = kernel.outerSize();
for (Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel,
outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
// The goal of unaligned_dense_assignment_loop is simply to factorize the handling
// of the non vectorizable beginning and ending parts
template <bool IsAligned = false>
struct unaligned_dense_assignment_loop {
// if IsAligned = true, then do nothing
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&, Index, Index) {}
};
template <>
struct unaligned_dense_assignment_loop<false> {
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
// FIXME check which version exhibits this issue
#if EIGEN_COMP_MSVC
template <typename Kernel>
static EIGEN_DONT_INLINE void run(Kernel& kernel, Index start, Index end)
#else
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel, Index start, Index end)
#endif
{
for (Index index = start; index < end; ++index) kernel.assignCoeff(index);
}
};
template <typename Kernel, int Index, int Stop>
struct copy_using_evaluator_linearvec_CompleteUnrolling {
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum { SrcAlignment = Kernel::AssignmentTraits::SrcAlignment, DstAlignment = Kernel::AssignmentTraits::DstAlignment };
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
kernel.template assignPacket<DstAlignment, SrcAlignment, PacketType>(Index);
enum { NextIndex = Index + unpacket_traits<PacketType>::size };
copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template <typename Kernel, int Stop>
struct copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, Stop, Stop> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel&) {}
};
template <typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
const Index size = kernel.size();
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
requestedAlignment = Kernel::AssignmentTraits::LinearRequiredAlignment,
packetSize = unpacket_traits<PacketType>::size,
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment) >= int(requestedAlignment),
dstAlignment = packet_traits<Scalar>::AlignedOnScalar ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment),
srcAlignment = Kernel::AssignmentTraits::JointAlignment
};
const Index alignedStart =
dstIsAligned ? 0 : internal::first_aligned<requestedAlignment>(kernel.dstDataPtr(), size);
const Index alignedEnd = alignedStart + ((size - alignedStart) / packetSize) * packetSize;
unaligned_dense_assignment_loop<dstIsAligned != 0>::run(kernel, 0, alignedStart);
for (Index index = alignedStart; index < alignedEnd; index += packetSize)
kernel.template assignPacket<dstAlignment, srcAlignment, PacketType>(index);
unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size);
}
};
template <typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum {
size = DstXprType::SizeAtCompileTime,
packetSize = unpacket_traits<PacketType>::size,
alignedSize = (int(size) / packetSize) * packetSize
};
copy_using_evaluator_linearvec_CompleteUnrolling<Kernel, 0, alignedSize>::run(kernel);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, alignedSize, size>::run(kernel);
}
};
/**************************
*** Inner vectorization ***
**************************/
template <typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling> {
typedef typename Kernel::PacketType PacketType;
enum { SrcAlignment = Kernel::AssignmentTraits::SrcAlignment, DstAlignment = Kernel::AssignmentTraits::DstAlignment };
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index packetSize = unpacket_traits<PacketType>::size;
for (Index outer = 0; outer < outerSize; ++outer)
for (Index inner = 0; inner < innerSize; inner += packetSize)
kernel.template assignPacketByOuterInner<DstAlignment, SrcAlignment, PacketType>(outer, inner);
}
};
template <typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, CompleteUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template <typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel) {
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::AssignmentTraits Traits;
const Index outerSize = kernel.outerSize();
for (Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime, Traits::SrcAlignment,
Traits::DstAlignment>::run(kernel, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template <typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
const Index size = kernel.size();
for (Index i = 0; i < size; ++i) kernel.assignCoeff(i);
}
};
template <typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
/**************************
*** Slice vectorization ***
***************************/
template <typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
packetSize = unpacket_traits<PacketType>::size,
requestedAlignment = int(Kernel::AssignmentTraits::InnerRequiredAlignment),
alignable =
packet_traits<Scalar>::AlignedOnScalar || int(Kernel::AssignmentTraits::DstAlignment) >= sizeof(Scalar),
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment) >= int(requestedAlignment),
dstAlignment = alignable ? int(requestedAlignment) : int(Kernel::AssignmentTraits::DstAlignment)
};
const Scalar* dst_ptr = kernel.dstDataPtr();
if ((!bool(dstIsAligned)) && (std::uintptr_t(dst_ptr) % sizeof(Scalar)) > 0) {
// the pointer is not aligned-on scalar, so alignment is not possible
return dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>::run(kernel);
}
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart =
((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned<requestedAlignment>(dst_ptr, innerSize);
for (Index outer = 0; outer < outerSize; ++outer) {
const Index alignedEnd = alignedStart + ((innerSize - alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for (Index inner = 0; inner < alignedStart; ++inner) kernel.assignCoeffByOuterInner(outer, inner);
// do the vectorizable part of the assignment
for (Index inner = alignedStart; inner < alignedEnd; inner += packetSize)
kernel.template assignPacketByOuterInner<dstAlignment, Unaligned, PacketType>(outer, inner);
// do the non-vectorizable part of the assignment
for (Index inner = alignedEnd; inner < innerSize; ++inner) kernel.assignCoeffByOuterInner(outer, inner);
alignedStart = numext::mini((alignedStart + alignedStep) % packetSize, innerSize);
}
}
};
#if EIGEN_UNALIGNED_VECTORIZE
template <typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, InnerUnrolling> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void run(Kernel& kernel) {
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum {
innerSize = DstXprType::InnerSizeAtCompileTime,
packetSize = unpacket_traits<PacketType>::size,
vectorizableSize = (int(innerSize) / int(packetSize)) * int(packetSize),
size = DstXprType::SizeAtCompileTime
};
for (Index outer = 0; outer < kernel.outerSize(); ++outer) {
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, vectorizableSize, 0, 0>::run(kernel, outer);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, vectorizableSize, innerSize>::run(kernel, outer);
}
}
};
#endif
/***************************************************************************
* Part 4 : Generic dense assignment kernel
***************************************************************************/
// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
// to another dense writable evaluator.
// It is parametrized by the two evaluators, and the actual assignment functor.
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
template <typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel {
protected:
typedef typename DstEvaluatorTypeT::XprType DstXprType;
typedef typename SrcEvaluatorTypeT::XprType SrcXprType;
public:
typedef DstEvaluatorTypeT DstEvaluatorType;
typedef SrcEvaluatorTypeT SrcEvaluatorType;
typedef typename DstEvaluatorType::Scalar Scalar;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE generic_dense_assignment_kernel(DstEvaluatorType& dst,
const SrcEvaluatorType& src,
const Functor& func, DstXprType& dstExpr)
: m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr) {
#ifdef EIGEN_DEBUG_ASSIGN
AssignmentTraits::debug();
#endif
}
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT { return m_dstExpr.size(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index innerSize() const EIGEN_NOEXCEPT { return m_dstExpr.innerSize(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerSize() const EIGEN_NOEXCEPT { return m_dstExpr.outerSize(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_dstExpr.rows(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_dstExpr.cols(); }
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerStride() const EIGEN_NOEXCEPT { return m_dstExpr.outerStride(); }
EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() EIGEN_NOEXCEPT { return m_dst; }
EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const EIGEN_NOEXCEPT { return m_src; }
/// Assign src(row,col) to dst(row,col) through the assignment functor.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index row, Index col) {
m_functor.assignCoeff(m_dst.coeffRef(row, col), m_src.coeff(row, col));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeff(Index index) {
m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignCoeffByOuterInner(Index outer, Index inner) {
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignCoeff(row, col);
}
template <int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index row, Index col) {
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row, col),
m_src.template packet<LoadMode, Packet>(row, col));
}
template <int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacket(Index index) {
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode, Packet>(index));
}
template <int StoreMode, int LoadMode, typename Packet>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void assignPacketByOuterInner(Index outer, Index inner) {
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignPacket<StoreMode, LoadMode, Packet>(row, col);
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) {
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::RowsAtCompileTime) == 1 ? 0
: int(Traits::ColsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags) & RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) {
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::ColsAtCompileTime) == 1 ? 0
: int(Traits::RowsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags) & RowMajorBit ? inner
: outer;
}
EIGEN_DEVICE_FUNC const Scalar* dstDataPtr() const { return m_dstExpr.data(); }
protected:
DstEvaluatorType& m_dst;
const SrcEvaluatorType& m_src;
const Functor& m_functor;
// TODO find a way to avoid the needs of the original expression
DstXprType& m_dstExpr;
};
// Special kernel used when computing small products whose operands have dynamic dimensions. It ensures that the
// PacketSize used is no larger than 4, thereby increasing the chance that vectorized instructions will be used
// when computing the product.
template <typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor>
class restricted_packet_dense_assignment_kernel
: public generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, BuiltIn> {
protected:
typedef generic_dense_assignment_kernel<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, BuiltIn> Base;
public:
typedef typename Base::Scalar Scalar;
typedef typename Base::DstXprType DstXprType;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor, 4> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC restricted_packet_dense_assignment_kernel(DstEvaluatorTypeT& dst, const SrcEvaluatorTypeT& src,
const Functor& func, DstXprType& dstExpr)
: Base(dst, src, func, dstExpr) {}
};
/***************************************************************************
* Part 5 : Entry point for dense rectangular assignment
***************************************************************************/
template <typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize_if_allowed(DstXprType& dst, const SrcXprType& src,
const Functor& /*func*/) {
EIGEN_ONLY_USED_FOR_DEBUG(dst);
EIGEN_ONLY_USED_FOR_DEBUG(src);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
}
template <typename DstXprType, typename SrcXprType, typename T1, typename T2>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize_if_allowed(DstXprType& dst, const SrcXprType& src,
const internal::assign_op<T1, T2>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if (((dst.rows() != dstRows) || (dst.cols() != dstCols))) dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == dstRows && dst.cols() == dstCols);
}
template <typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_dense_assignment_loop(DstXprType& dst,
const SrcXprType& src,
const Functor& func) {
typedef evaluator<DstXprType> DstEvaluatorType;
typedef evaluator<SrcXprType> SrcEvaluatorType;
SrcEvaluatorType srcEvaluator(src);
// NOTE To properly handle A = (A*A.transpose())/s with A rectangular,
// we need to resize the destination after the source evaluator has been created.
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
typedef generic_dense_assignment_kernel<DstEvaluatorType, SrcEvaluatorType, Functor> Kernel;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
template <typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_dense_assignment_loop(DstXprType& dst, const SrcXprType& src) {
call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>());
}
/***************************************************************************
* Part 6 : Generic assignment
***************************************************************************/
// Based on the respective shapes of the destination and source,
// the class AssignmentKind determine the kind of assignment mechanism.
// AssignmentKind must define a Kind typedef.
template <typename DstShape, typename SrcShape>
struct AssignmentKind;
// Assignment kind defined in this file:
struct Dense2Dense {};
struct EigenBase2EigenBase {};
template <typename, typename>
struct AssignmentKind {
typedef EigenBase2EigenBase Kind;
};
template <>
struct AssignmentKind<DenseShape, DenseShape> {
typedef Dense2Dense Kind;
};
// This is the main assignment class
template <typename DstXprType, typename SrcXprType, typename Functor,
typename Kind = typename AssignmentKind<typename evaluator_traits<DstXprType>::Shape,
typename evaluator_traits<SrcXprType>::Shape>::Kind,
typename EnableIf = void>
struct Assignment;
// The only purpose of this call_assignment() function is to deal with noalias() / "assume-aliasing" and automatic
// transposition. Indeed, I (Gael) think that this concept of "assume-aliasing" was a mistake, and it makes thing quite
// complicated. So this intermediate function removes everything related to "assume-aliasing" such that Assignment does
// not has to bother about these annoying details.
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_assignment(Dst& dst, const Src& src) {
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar, typename Src::Scalar>());
}
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_assignment(const Dst& dst, const Src& src) {
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar, typename Src::Scalar>());
}
// Deal with "assume-aliasing"
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment(
Dst& dst, const Src& src, const Func& func, std::enable_if_t<evaluator_assume_aliasing<Src>::value, void*> = 0) {
typename plain_matrix_type<Src>::type tmp(src);
call_assignment_no_alias(dst, tmp, func);
}
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_assignment(
Dst& dst, const Src& src, const Func& func, std::enable_if_t<!evaluator_assume_aliasing<Src>::value, void*> = 0) {
call_assignment_no_alias(dst, src, func);
}
// by-pass "assume-aliasing"
// When there is no aliasing, we require that 'dst' has been properly resized
template <typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment(NoAlias<Dst, StorageBase>& dst,
const Src& src, const Func& func) {
call_assignment_no_alias(dst.expression(), src, func);
}
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias(Dst& dst, const Src& src,
const Func& func) {
enum {
NeedToTranspose = ((int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1) ||
(int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1)) &&
int(Dst::SizeAtCompileTime) != 1
};
typedef std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst> ActualDstTypeCleaned;
typedef std::conditional_t<NeedToTranspose, Transpose<Dst>, Dst&> ActualDstType;
ActualDstType actualDst(dst);
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned, Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func, typename ActualDstTypeCleaned::Scalar, typename Src::Scalar);
Assignment<ActualDstTypeCleaned, Src, Func>::run(actualDst, src, func);
}
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_restricted_packet_assignment_no_alias(Dst& dst, const Src& src,
const Func& func) {
typedef evaluator<Dst> DstEvaluatorType;
typedef evaluator<Src> SrcEvaluatorType;
typedef restricted_packet_dense_assignment_kernel<DstEvaluatorType, SrcEvaluatorType, Func> Kernel;
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func, typename Dst::Scalar, typename Src::Scalar);
SrcEvaluatorType srcEvaluator(src);
resize_if_allowed(dst, src, func);
DstEvaluatorType dstEvaluator(dst);
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias(Dst& dst, const Src& src) {
call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar, typename Src::Scalar>());
}
template <typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias_no_transpose(Dst& dst,
const Src& src,
const Func& func) {
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst, Src)
EIGEN_CHECK_BINARY_COMPATIBILIY(Func, typename Dst::Scalar, typename Src::Scalar);
Assignment<Dst, Src, Func>::run(dst, src, func);
}
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR void call_assignment_no_alias_no_transpose(Dst& dst,
const Src& src) {
call_assignment_no_alias_no_transpose(dst, src, internal::assign_op<typename Dst::Scalar, typename Src::Scalar>());
}
// forward declaration
template <typename Dst, typename Src>
EIGEN_DEVICE_FUNC void check_for_aliasing(const Dst& dst, const Src& src);
// Generic Dense to Dense assignment
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template <typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Weak> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src, const Functor& func) {
#ifndef EIGEN_NO_DEBUG
internal::check_for_aliasing(dst, src);
#endif
call_dense_assignment_loop(dst, src, func);
}
};
template <typename DstXprType, typename SrcPlainObject, typename Weak>
struct Assignment<DstXprType, CwiseNullaryOp<scalar_constant_op<typename DstXprType::Scalar>, SrcPlainObject>,
assign_op<typename DstXprType::Scalar, typename DstXprType::Scalar>, Dense2Dense, Weak> {
using Scalar = typename DstXprType::Scalar;
using NullaryOp = scalar_constant_op<Scalar>;
using SrcXprType = CwiseNullaryOp<NullaryOp, SrcPlainObject>;
using Functor = assign_op<Scalar, Scalar>;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const Functor& /*func*/) {
eigen_fill_impl<DstXprType>::run(dst, src);
}
};
template <typename DstXprType, typename SrcPlainObject, typename Weak>
struct Assignment<DstXprType, CwiseNullaryOp<scalar_zero_op<typename DstXprType::Scalar>, SrcPlainObject>,
assign_op<typename DstXprType::Scalar, typename DstXprType::Scalar>, Dense2Dense, Weak> {
using Scalar = typename DstXprType::Scalar;
using NullaryOp = scalar_zero_op<Scalar>;
using SrcXprType = CwiseNullaryOp<NullaryOp, SrcPlainObject>;
using Functor = assign_op<Scalar, Scalar>;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(DstXprType& dst, const SrcXprType& src,
const Functor& /*func*/) {
eigen_zero_impl<DstXprType>::run(dst, src);
}
};
// Generic assignment through evalTo.
// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
// Note that the last template argument "Weak" is needed to make it possible to perform
// both partial specialization+SFINAE without ambiguous specialization
template <typename DstXprType, typename SrcXprType, typename Functor, typename Weak>
struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Weak> {
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(
DstXprType& dst, const SrcXprType& src,
const internal::assign_op<typename DstXprType::Scalar, typename SrcXprType::Scalar>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.evalTo(dst);
}
// NOTE The following two functions are templated to avoid their instantiation if not needed
// This is needed because some expressions supports evalTo only and/or have 'void' as scalar type.
template <typename SrcScalarType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(
DstXprType& dst, const SrcXprType& src,
const internal::add_assign_op<typename DstXprType::Scalar, SrcScalarType>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.addTo(dst);
}
template <typename SrcScalarType>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(
DstXprType& dst, const SrcXprType& src,
const internal::sub_assign_op<typename DstXprType::Scalar, SrcScalarType>& /*func*/) {
Index dstRows = src.rows();
Index dstCols = src.cols();
if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols);
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.subTo(dst);
}
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_EVALUATOR_H