| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_ORTHOMETHODS_H | 
 | #define EIGEN_ORTHOMETHODS_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \returns the cross product of \c *this and \a other | 
 |   * | 
 |   * Here is a very good explanation of cross-product: http://xkcd.com/199/ | 
 |   *  | 
 |   * With complex numbers, the cross product is implemented as | 
 |   * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$ | 
 |   *  | 
 |   * \sa MatrixBase::cross3() | 
 |   */ | 
 | template<typename Derived> | 
 | template<typename OtherDerived> | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
 | typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type | 
 | #else | 
 | typename MatrixBase<Derived>::PlainObject | 
 | #endif | 
 | MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const | 
 | { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) | 
 |  | 
 |   // Note that there is no need for an expression here since the compiler | 
 |   // optimize such a small temporary very well (even within a complex expression) | 
 |   typename internal::nested_eval<Derived,2>::type lhs(derived()); | 
 |   typename internal::nested_eval<OtherDerived,2>::type rhs(other.derived()); | 
 |   return typename cross_product_return_type<OtherDerived>::type( | 
 |     numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), | 
 |     numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), | 
 |     numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) | 
 |   ); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | template< int Arch,typename VectorLhs,typename VectorRhs, | 
 |           typename Scalar = typename VectorLhs::Scalar, | 
 |           bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> | 
 | struct cross3_impl { | 
 |   EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type | 
 |   run(const VectorLhs& lhs, const VectorRhs& rhs) | 
 |   { | 
 |     return typename internal::plain_matrix_type<VectorLhs>::type( | 
 |       numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), | 
 |       numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), | 
 |       numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), | 
 |       0 | 
 |     ); | 
 |   } | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients | 
 |   * | 
 |   * The size of \c *this and \a other must be four. This function is especially useful | 
 |   * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. | 
 |   * | 
 |   * \sa MatrixBase::cross() | 
 |   */ | 
 | template<typename Derived> | 
 | template<typename OtherDerived> | 
 | EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject | 
 | MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const | 
 | { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) | 
 |  | 
 |   typedef typename internal::nested_eval<Derived,2>::type DerivedNested; | 
 |   typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested; | 
 |   DerivedNested lhs(derived()); | 
 |   OtherDerivedNested rhs(other.derived()); | 
 |  | 
 |   return internal::cross3_impl<Architecture::Target, | 
 |                         typename internal::remove_all<DerivedNested>::type, | 
 |                         typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs); | 
 | } | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \returns a matrix expression of the cross product of each column or row | 
 |   * of the referenced expression with the \a other vector. | 
 |   * | 
 |   * The referenced matrix must have one dimension equal to 3. | 
 |   * The result matrix has the same dimensions than the referenced one. | 
 |   * | 
 |   * \sa MatrixBase::cross() */ | 
 | template<typename ExpressionType, int Direction> | 
 | template<typename OtherDerived> | 
 | EIGEN_DEVICE_FUNC  | 
 | const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType | 
 | VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const | 
 | { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) | 
 |   EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value), | 
 |     YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
 |    | 
 |   typename internal::nested_eval<ExpressionType,2>::type mat(_expression()); | 
 |   typename internal::nested_eval<OtherDerived,2>::type vec(other.derived()); | 
 |  | 
 |   CrossReturnType res(_expression().rows(),_expression().cols()); | 
 |   if(Direction==Vertical) | 
 |   { | 
 |     eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); | 
 |     res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); | 
 |     res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); | 
 |     res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); | 
 |   } | 
 |   else | 
 |   { | 
 |     eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); | 
 |     res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); | 
 |     res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); | 
 |     res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); | 
 |   } | 
 |   return res; | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<typename Derived, int Size = Derived::SizeAtCompileTime> | 
 | struct unitOrthogonal_selector | 
 | { | 
 |   typedef typename plain_matrix_type<Derived>::type VectorType; | 
 |   typedef typename traits<Derived>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<Scalar,2,1> Vector2; | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline VectorType run(const Derived& src) | 
 |   { | 
 |     VectorType perp = VectorType::Zero(src.size()); | 
 |     Index maxi = 0; | 
 |     Index sndi = 0; | 
 |     src.cwiseAbs().maxCoeff(&maxi); | 
 |     if (maxi==0) | 
 |       sndi = 1; | 
 |     RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); | 
 |     perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; | 
 |     perp.coeffRef(sndi) =  numext::conj(src.coeff(maxi)) * invnm; | 
 |  | 
 |     return perp; | 
 |    } | 
 | }; | 
 |  | 
 | template<typename Derived> | 
 | struct unitOrthogonal_selector<Derived,3> | 
 | { | 
 |   typedef typename plain_matrix_type<Derived>::type VectorType; | 
 |   typedef typename traits<Derived>::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline VectorType run(const Derived& src) | 
 |   { | 
 |     VectorType perp; | 
 |     /* Let us compute the crossed product of *this with a vector | 
 |      * that is not too close to being colinear to *this. | 
 |      */ | 
 |  | 
 |     /* unless the x and y coords are both close to zero, we can | 
 |      * simply take ( -y, x, 0 ) and normalize it. | 
 |      */ | 
 |     if((!isMuchSmallerThan(src.x(), src.z())) | 
 |     || (!isMuchSmallerThan(src.y(), src.z()))) | 
 |     { | 
 |       RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); | 
 |       perp.coeffRef(0) = -numext::conj(src.y())*invnm; | 
 |       perp.coeffRef(1) = numext::conj(src.x())*invnm; | 
 |       perp.coeffRef(2) = 0; | 
 |     } | 
 |     /* if both x and y are close to zero, then the vector is close | 
 |      * to the z-axis, so it's far from colinear to the x-axis for instance. | 
 |      * So we take the crossed product with (1,0,0) and normalize it. | 
 |      */ | 
 |     else | 
 |     { | 
 |       RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); | 
 |       perp.coeffRef(0) = 0; | 
 |       perp.coeffRef(1) = -numext::conj(src.z())*invnm; | 
 |       perp.coeffRef(2) = numext::conj(src.y())*invnm; | 
 |     } | 
 |  | 
 |     return perp; | 
 |    } | 
 | }; | 
 |  | 
 | template<typename Derived> | 
 | struct unitOrthogonal_selector<Derived,2> | 
 | { | 
 |   typedef typename plain_matrix_type<Derived>::type VectorType; | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline VectorType run(const Derived& src) | 
 |   { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); } | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \returns a unit vector which is orthogonal to \c *this | 
 |   * | 
 |   * The size of \c *this must be at least 2. If the size is exactly 2, | 
 |   * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). | 
 |   * | 
 |   * \sa cross() | 
 |   */ | 
 | template<typename Derived> | 
 | EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject | 
 | MatrixBase<Derived>::unitOrthogonal() const | 
 | { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) | 
 |   return internal::unitOrthogonal_selector<Derived>::run(derived()); | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_ORTHOMETHODS_H |