| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_INCOMPLETE_LUT_H | 
 | #define EIGEN_INCOMPLETE_LUT_H | 
 |  | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \internal | 
 |   * Compute a quick-sort split of a vector | 
 |   * On output, the vector row is permuted such that its elements satisfy | 
 |   * abs(row(i)) >= abs(row(ncut)) if i<ncut | 
 |   * abs(row(i)) <= abs(row(ncut)) if i>ncut | 
 |   * \param row The vector of values | 
 |   * \param ind The array of index for the elements in @p row | 
 |   * \param ncut  The number of largest elements to keep | 
 |   **/ | 
 | template <typename VectorV, typename VectorI> | 
 | Index QuickSplit(VectorV &row, VectorI &ind, Index ncut) | 
 | { | 
 |   typedef typename VectorV::RealScalar RealScalar; | 
 |   using std::swap; | 
 |   using std::abs; | 
 |   Index mid; | 
 |   Index n = row.size(); /* length of the vector */ | 
 |   Index first, last ; | 
 |  | 
 |   ncut--; /* to fit the zero-based indices */ | 
 |   first = 0; | 
 |   last = n-1; | 
 |   if (ncut < first || ncut > last ) return 0; | 
 |  | 
 |   do { | 
 |     mid = first; | 
 |     RealScalar abskey = abs(row(mid)); | 
 |     for (Index j = first + 1; j <= last; j++) { | 
 |       if ( abs(row(j)) > abskey) { | 
 |         ++mid; | 
 |         swap(row(mid), row(j)); | 
 |         swap(ind(mid), ind(j)); | 
 |       } | 
 |     } | 
 |     /* Interchange for the pivot element */ | 
 |     swap(row(mid), row(first)); | 
 |     swap(ind(mid), ind(first)); | 
 |  | 
 |     if (mid > ncut) last = mid - 1; | 
 |     else if (mid < ncut ) first = mid + 1; | 
 |   } while (mid != ncut ); | 
 |  | 
 |   return 0; /* mid is equal to ncut */ | 
 | } | 
 |  | 
 | }// end namespace internal | 
 |  | 
 | /** \ingroup IterativeLinearSolvers_Module | 
 |   * \class IncompleteLUT | 
 |   * \brief Incomplete LU factorization with dual-threshold strategy | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * During the numerical factorization, two dropping rules are used : | 
 |   *  1) any element whose magnitude is less than some tolerance is dropped. | 
 |   *    This tolerance is obtained by multiplying the input tolerance @p droptol | 
 |   *    by the average magnitude of all the original elements in the current row. | 
 |   *  2) After the elimination of the row, only the @p fill largest elements in | 
 |   *    the L part and the @p fill largest elements in the U part are kept | 
 |   *    (in addition to the diagonal element ). Note that @p fill is computed from | 
 |   *    the input parameter @p fillfactor which is used the ratio to control the fill_in | 
 |   *    relatively to the initial number of nonzero elements. | 
 |   * | 
 |   * The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements) | 
 |   * and when @p fill=n/2 with @p droptol being different to zero. | 
 |   * | 
 |   * References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization, | 
 |   *              Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994. | 
 |   * | 
 |   * NOTE : The following implementation is derived from the ILUT implementation | 
 |   * in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota | 
 |   *  released under the terms of the GNU LGPL: | 
 |   *    http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README | 
 |   * However, Yousef Saad gave us permission to relicense his ILUT code to MPL2. | 
 |   * See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012: | 
 |   *   http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html | 
 |   * alternatively, on GMANE: | 
 |   *   http://comments.gmane.org/gmane.comp.lib.eigen/3302 | 
 |   */ | 
 | template <typename Scalar_, typename StorageIndex_ = int> | 
 | class IncompleteLUT : public SparseSolverBase<IncompleteLUT<Scalar_, StorageIndex_> > | 
 | { | 
 |   protected: | 
 |     typedef SparseSolverBase<IncompleteLUT> Base; | 
 |     using Base::m_isInitialized; | 
 |   public: | 
 |     typedef Scalar_ Scalar; | 
 |     typedef StorageIndex_ StorageIndex; | 
 |     typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |     typedef Matrix<Scalar,Dynamic,1> Vector; | 
 |     typedef Matrix<StorageIndex,Dynamic,1> VectorI; | 
 |     typedef SparseMatrix<Scalar,RowMajor,StorageIndex> FactorType; | 
 |  | 
 |     enum { | 
 |       ColsAtCompileTime = Dynamic, | 
 |       MaxColsAtCompileTime = Dynamic | 
 |     }; | 
 |  | 
 |   public: | 
 |  | 
 |     IncompleteLUT() | 
 |       : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10), | 
 |         m_analysisIsOk(false), m_factorizationIsOk(false) | 
 |     {} | 
 |  | 
 |     template<typename MatrixType> | 
 |     explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10) | 
 |       : m_droptol(droptol),m_fillfactor(fillfactor), | 
 |         m_analysisIsOk(false),m_factorizationIsOk(false) | 
 |     { | 
 |       eigen_assert(fillfactor != 0); | 
 |       compute(mat); | 
 |     } | 
 |  | 
 |     EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } | 
 |  | 
 |     EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } | 
 |  | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was successful, | 
 |       *          \c NumericalIssue if the matrix.appears to be negative. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "IncompleteLUT is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |  | 
 |     template<typename MatrixType> | 
 |     void analyzePattern(const MatrixType& amat); | 
 |  | 
 |     template<typename MatrixType> | 
 |     void factorize(const MatrixType& amat); | 
 |  | 
 |     /** | 
 |       * Compute an incomplete LU factorization with dual threshold on the matrix mat | 
 |       * No pivoting is done in this version | 
 |       * | 
 |       **/ | 
 |     template<typename MatrixType> | 
 |     IncompleteLUT& compute(const MatrixType& amat) | 
 |     { | 
 |       analyzePattern(amat); | 
 |       factorize(amat); | 
 |       return *this; | 
 |     } | 
 |  | 
 |     void setDroptol(const RealScalar& droptol); | 
 |     void setFillfactor(int fillfactor); | 
 |  | 
 |     template<typename Rhs, typename Dest> | 
 |     void _solve_impl(const Rhs& b, Dest& x) const | 
 |     { | 
 |       x = m_Pinv * b; | 
 |       x = m_lu.template triangularView<UnitLower>().solve(x); | 
 |       x = m_lu.template triangularView<Upper>().solve(x); | 
 |       x = m_P * x; | 
 |     } | 
 |  | 
 | protected: | 
 |  | 
 |     /** keeps off-diagonal entries; drops diagonal entries */ | 
 |     struct keep_diag { | 
 |       inline bool operator() (const Index& row, const Index& col, const Scalar&) const | 
 |       { | 
 |         return row!=col; | 
 |       } | 
 |     }; | 
 |  | 
 | protected: | 
 |  | 
 |     FactorType m_lu; | 
 |     RealScalar m_droptol; | 
 |     int m_fillfactor; | 
 |     bool m_analysisIsOk; | 
 |     bool m_factorizationIsOk; | 
 |     ComputationInfo m_info; | 
 |     PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P;     // Fill-reducing permutation | 
 |     PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv;  // Inverse permutation | 
 | }; | 
 |  | 
 | /** | 
 |  * Set control parameter droptol | 
 |  *  \param droptol   Drop any element whose magnitude is less than this tolerance | 
 |  **/ | 
 | template<typename Scalar, typename StorageIndex> | 
 | void IncompleteLUT<Scalar,StorageIndex>::setDroptol(const RealScalar& droptol) | 
 | { | 
 |   this->m_droptol = droptol; | 
 | } | 
 |  | 
 | /** | 
 |  * Set control parameter fillfactor | 
 |  * \param fillfactor  This is used to compute the  number @p fill_in of largest elements to keep on each row. | 
 |  **/ | 
 | template<typename Scalar, typename StorageIndex> | 
 | void IncompleteLUT<Scalar,StorageIndex>::setFillfactor(int fillfactor) | 
 | { | 
 |   this->m_fillfactor = fillfactor; | 
 | } | 
 |  | 
 | template <typename Scalar, typename StorageIndex> | 
 | template<typename MatrixType_> | 
 | void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const MatrixType_& amat) | 
 | { | 
 |   // Compute the Fill-reducing permutation | 
 |   // Since ILUT does not perform any numerical pivoting, | 
 |   // it is highly preferable to keep the diagonal through symmetric permutations. | 
 |   // To this end, let's symmetrize the pattern and perform AMD on it. | 
 |   SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat; | 
 |   SparseMatrix<Scalar,ColMajor, StorageIndex> mat2 = amat.transpose(); | 
 |   // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice. | 
 |   //       on the other hand for a really non-symmetric pattern, mat2*mat1 should be preferred... | 
 |   SparseMatrix<Scalar,ColMajor, StorageIndex> AtA = mat2 + mat1; | 
 |   AMDOrdering<StorageIndex> ordering; | 
 |   ordering(AtA,m_P); | 
 |   m_Pinv  = m_P.inverse(); // cache the inverse permutation | 
 |   m_analysisIsOk = true; | 
 |   m_factorizationIsOk = false; | 
 |   m_isInitialized = true; | 
 | } | 
 |  | 
 | template <typename Scalar, typename StorageIndex> | 
 | template<typename MatrixType_> | 
 | void IncompleteLUT<Scalar,StorageIndex>::factorize(const MatrixType_& amat) | 
 | { | 
 |   using std::sqrt; | 
 |   using std::swap; | 
 |   using std::abs; | 
 |   using internal::convert_index; | 
 |  | 
 |   eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix"); | 
 |   Index n = amat.cols();  // Size of the matrix | 
 |   m_lu.resize(n,n); | 
 |   // Declare Working vectors and variables | 
 |   Vector u(n) ;     // real values of the row -- maximum size is n -- | 
 |   VectorI ju(n);   // column position of the values in u -- maximum size  is n | 
 |   VectorI jr(n);   // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1 | 
 |  | 
 |   // Apply the fill-reducing permutation | 
 |   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
 |   SparseMatrix<Scalar,RowMajor, StorageIndex> mat; | 
 |   mat = amat.twistedBy(m_Pinv); | 
 |  | 
 |   // Initialization | 
 |   jr.fill(-1); | 
 |   ju.fill(0); | 
 |   u.fill(0); | 
 |  | 
 |   // number of largest elements to keep in each row: | 
 |   Index fill_in = (amat.nonZeros()*m_fillfactor)/n + 1; | 
 |   if (fill_in > n) fill_in = n; | 
 |  | 
 |   // number of largest nonzero elements to keep in the L and the U part of the current row: | 
 |   Index nnzL = fill_in/2; | 
 |   Index nnzU = nnzL; | 
 |   m_lu.reserve(n * (nnzL + nnzU + 1)); | 
 |  | 
 |   // global loop over the rows of the sparse matrix | 
 |   for (Index ii = 0; ii < n; ii++) | 
 |   { | 
 |     // 1 - copy the lower and the upper part of the row i of mat in the working vector u | 
 |  | 
 |     Index sizeu = 1; // number of nonzero elements in the upper part of the current row | 
 |     Index sizel = 0; // number of nonzero elements in the lower part of the current row | 
 |     ju(ii)    = convert_index<StorageIndex>(ii); | 
 |     u(ii)     = 0; | 
 |     jr(ii)    = convert_index<StorageIndex>(ii); | 
 |     RealScalar rownorm = 0; | 
 |  | 
 |     typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii | 
 |     for (; j_it; ++j_it) | 
 |     { | 
 |       Index k = j_it.index(); | 
 |       if (k < ii) | 
 |       { | 
 |         // copy the lower part | 
 |         ju(sizel) = convert_index<StorageIndex>(k); | 
 |         u(sizel) = j_it.value(); | 
 |         jr(k) = convert_index<StorageIndex>(sizel); | 
 |         ++sizel; | 
 |       } | 
 |       else if (k == ii) | 
 |       { | 
 |         u(ii) = j_it.value(); | 
 |       } | 
 |       else | 
 |       { | 
 |         // copy the upper part | 
 |         Index jpos = ii + sizeu; | 
 |         ju(jpos) = convert_index<StorageIndex>(k); | 
 |         u(jpos) = j_it.value(); | 
 |         jr(k) = convert_index<StorageIndex>(jpos); | 
 |         ++sizeu; | 
 |       } | 
 |       rownorm += numext::abs2(j_it.value()); | 
 |     } | 
 |  | 
 |     // 2 - detect possible zero row | 
 |     if(rownorm==0) | 
 |     { | 
 |       m_info = NumericalIssue; | 
 |       return; | 
 |     } | 
 |     // Take the 2-norm of the current row as a relative tolerance | 
 |     rownorm = sqrt(rownorm); | 
 |  | 
 |     // 3 - eliminate the previous nonzero rows | 
 |     Index jj = 0; | 
 |     Index len = 0; | 
 |     while (jj < sizel) | 
 |     { | 
 |       // In order to eliminate in the correct order, | 
 |       // we must select first the smallest column index among  ju(jj:sizel) | 
 |       Index k; | 
 |       Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment | 
 |       k += jj; | 
 |       if (minrow != ju(jj)) | 
 |       { | 
 |         // swap the two locations | 
 |         Index j = ju(jj); | 
 |         swap(ju(jj), ju(k)); | 
 |         jr(minrow) = convert_index<StorageIndex>(jj); | 
 |         jr(j) = convert_index<StorageIndex>(k); | 
 |         swap(u(jj), u(k)); | 
 |       } | 
 |       // Reset this location | 
 |       jr(minrow) = -1; | 
 |  | 
 |       // Start elimination | 
 |       typename FactorType::InnerIterator ki_it(m_lu, minrow); | 
 |       while (ki_it && ki_it.index() < minrow) ++ki_it; | 
 |       eigen_internal_assert(ki_it && ki_it.col()==minrow); | 
 |       Scalar fact = u(jj) / ki_it.value(); | 
 |  | 
 |       // drop too small elements | 
 |       if(abs(fact) <= m_droptol) | 
 |       { | 
 |         jj++; | 
 |         continue; | 
 |       } | 
 |  | 
 |       // linear combination of the current row ii and the row minrow | 
 |       ++ki_it; | 
 |       for (; ki_it; ++ki_it) | 
 |       { | 
 |         Scalar prod = fact * ki_it.value(); | 
 |         Index j     = ki_it.index(); | 
 |         Index jpos  = jr(j); | 
 |         if (jpos == -1) // fill-in element | 
 |         { | 
 |           Index newpos; | 
 |           if (j >= ii) // dealing with the upper part | 
 |           { | 
 |             newpos = ii + sizeu; | 
 |             sizeu++; | 
 |             eigen_internal_assert(sizeu<=n); | 
 |           } | 
 |           else // dealing with the lower part | 
 |           { | 
 |             newpos = sizel; | 
 |             sizel++; | 
 |             eigen_internal_assert(sizel<=ii); | 
 |           } | 
 |           ju(newpos) = convert_index<StorageIndex>(j); | 
 |           u(newpos) = -prod; | 
 |           jr(j) = convert_index<StorageIndex>(newpos); | 
 |         } | 
 |         else | 
 |           u(jpos) -= prod; | 
 |       } | 
 |       // store the pivot element | 
 |       u(len)  = fact; | 
 |       ju(len) = convert_index<StorageIndex>(minrow); | 
 |       ++len; | 
 |  | 
 |       jj++; | 
 |     } // end of the elimination on the row ii | 
 |  | 
 |     // reset the upper part of the pointer jr to zero | 
 |     for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1; | 
 |  | 
 |     // 4 - partially sort and insert the elements in the m_lu matrix | 
 |  | 
 |     // sort the L-part of the row | 
 |     sizel = len; | 
 |     len = (std::min)(sizel, nnzL); | 
 |     typename Vector::SegmentReturnType ul(u.segment(0, sizel)); | 
 |     typename VectorI::SegmentReturnType jul(ju.segment(0, sizel)); | 
 |     internal::QuickSplit(ul, jul, len); | 
 |  | 
 |     // store the largest m_fill elements of the L part | 
 |     m_lu.startVec(ii); | 
 |     for(Index k = 0; k < len; k++) | 
 |       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); | 
 |  | 
 |     // store the diagonal element | 
 |     // apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization) | 
 |     if (u(ii) == Scalar(0)) | 
 |       u(ii) = sqrt(m_droptol) * rownorm; | 
 |     m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii); | 
 |  | 
 |     // sort the U-part of the row | 
 |     // apply the dropping rule first | 
 |     len = 0; | 
 |     for(Index k = 1; k < sizeu; k++) | 
 |     { | 
 |       if(abs(u(ii+k)) > m_droptol * rownorm ) | 
 |       { | 
 |         ++len; | 
 |         u(ii + len)  = u(ii + k); | 
 |         ju(ii + len) = ju(ii + k); | 
 |       } | 
 |     } | 
 |     sizeu = len + 1; // +1 to take into account the diagonal element | 
 |     len = (std::min)(sizeu, nnzU); | 
 |     typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1)); | 
 |     typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1)); | 
 |     internal::QuickSplit(uu, juu, len); | 
 |  | 
 |     // store the largest elements of the U part | 
 |     for(Index k = ii + 1; k < ii + len; k++) | 
 |       m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); | 
 |   } | 
 |   m_lu.finalize(); | 
 |   m_lu.makeCompressed(); | 
 |  | 
 |   m_factorizationIsOk = true; | 
 |   m_info = Success; | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_INCOMPLETE_LUT_H |