| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_INVERSE_IMPL_H | 
 | #define EIGEN_INVERSE_IMPL_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |  | 
 | /********************************** | 
 | *** General case implementation *** | 
 | **********************************/ | 
 |  | 
 | template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> | 
 | struct compute_inverse | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline void run(const MatrixType& matrix, ResultType& result) | 
 |   { | 
 |     result = matrix.partialPivLu().inverse(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> | 
 | struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; | 
 |  | 
 | /**************************** | 
 | *** Size 1 implementation *** | 
 | ****************************/ | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct compute_inverse<MatrixType, ResultType, 1> | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline void run(const MatrixType& matrix, ResultType& result) | 
 |   { | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     internal::evaluator<MatrixType> matrixEval(matrix); | 
 |     result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1> | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline void run( | 
 |     const MatrixType& matrix, | 
 |     const typename MatrixType::RealScalar& absDeterminantThreshold, | 
 |     ResultType& result, | 
 |     typename ResultType::Scalar& determinant, | 
 |     bool& invertible | 
 |   ) | 
 |   { | 
 |     using std::abs; | 
 |     determinant = matrix.coeff(0,0); | 
 |     invertible = abs(determinant) > absDeterminantThreshold; | 
 |     if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; | 
 |   } | 
 | }; | 
 |  | 
 | /**************************** | 
 | *** Size 2 implementation *** | 
 | ****************************/ | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | EIGEN_DEVICE_FUNC  | 
 | inline void compute_inverse_size2_helper( | 
 |     const MatrixType& matrix, const typename ResultType::Scalar& invdet, | 
 |     ResultType& result) | 
 | { | 
 |   typename ResultType::Scalar temp = matrix.coeff(0,0); | 
 |   result.coeffRef(0,0) =  matrix.coeff(1,1) * invdet; | 
 |   result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; | 
 |   result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; | 
 |   result.coeffRef(1,1) =  temp * invdet; | 
 | } | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct compute_inverse<MatrixType, ResultType, 2> | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline void run(const MatrixType& matrix, ResultType& result) | 
 |   { | 
 |     typedef typename ResultType::Scalar Scalar; | 
 |     const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); | 
 |     compute_inverse_size2_helper(matrix, invdet, result); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2> | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline void run( | 
 |     const MatrixType& matrix, | 
 |     const typename MatrixType::RealScalar& absDeterminantThreshold, | 
 |     ResultType& inverse, | 
 |     typename ResultType::Scalar& determinant, | 
 |     bool& invertible | 
 |   ) | 
 |   { | 
 |     using std::abs; | 
 |     typedef typename ResultType::Scalar Scalar; | 
 |     determinant = matrix.determinant(); | 
 |     invertible = abs(determinant) > absDeterminantThreshold; | 
 |     if(!invertible) return; | 
 |     const Scalar invdet = Scalar(1) / determinant; | 
 |     compute_inverse_size2_helper(matrix, invdet, inverse); | 
 |   } | 
 | }; | 
 |  | 
 | /**************************** | 
 | *** Size 3 implementation *** | 
 | ****************************/ | 
 |  | 
 | template<typename MatrixType, int i, int j> | 
 | EIGEN_DEVICE_FUNC  | 
 | inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) | 
 | { | 
 |   enum { | 
 |     i1 = (i+1) % 3, | 
 |     i2 = (i+2) % 3, | 
 |     j1 = (j+1) % 3, | 
 |     j2 = (j+2) % 3 | 
 |   }; | 
 |   return m.coeff(i1, j1) * m.coeff(i2, j2) | 
 |        - m.coeff(i1, j2) * m.coeff(i2, j1); | 
 | } | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | EIGEN_DEVICE_FUNC | 
 | inline void compute_inverse_size3_helper( | 
 |     const MatrixType& matrix, | 
 |     const typename ResultType::Scalar& invdet, | 
 |     const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0, | 
 |     ResultType& result) | 
 | { | 
 |   // Compute cofactors in a way that avoids aliasing issues. | 
 |   typedef typename ResultType::Scalar Scalar; | 
 |   const Scalar c01 = cofactor_3x3<MatrixType,0,1>(matrix) * invdet; | 
 |   const Scalar c11 = cofactor_3x3<MatrixType,1,1>(matrix) * invdet; | 
 |   const Scalar c02 = cofactor_3x3<MatrixType,0,2>(matrix) * invdet; | 
 |   result.coeffRef(1,2) =  cofactor_3x3<MatrixType,2,1>(matrix) * invdet; | 
 |   result.coeffRef(2,1) =  cofactor_3x3<MatrixType,1,2>(matrix) * invdet; | 
 |   result.coeffRef(2,2) =  cofactor_3x3<MatrixType,2,2>(matrix) * invdet; | 
 |   result.coeffRef(1,0) =  c01; | 
 |   result.coeffRef(1,1) =  c11; | 
 |   result.coeffRef(2,0) =  c02;   | 
 |   result.row(0) = cofactors_col0 * invdet; | 
 | } | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct compute_inverse<MatrixType, ResultType, 3> | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline void run(const MatrixType& matrix, ResultType& result) | 
 |   { | 
 |     typedef typename ResultType::Scalar Scalar; | 
 |     Matrix<typename MatrixType::Scalar,3,1> cofactors_col0; | 
 |     cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix); | 
 |     cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix); | 
 |     cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix); | 
 |     const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); | 
 |     const Scalar invdet = Scalar(1) / det; | 
 |     compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3> | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline void run( | 
 |     const MatrixType& matrix, | 
 |     const typename MatrixType::RealScalar& absDeterminantThreshold, | 
 |     ResultType& inverse, | 
 |     typename ResultType::Scalar& determinant, | 
 |     bool& invertible | 
 |   ) | 
 |   { | 
 |     typedef typename ResultType::Scalar Scalar; | 
 |     Matrix<Scalar,3,1> cofactors_col0; | 
 |     cofactors_col0.coeffRef(0) =  cofactor_3x3<MatrixType,0,0>(matrix); | 
 |     cofactors_col0.coeffRef(1) =  cofactor_3x3<MatrixType,1,0>(matrix); | 
 |     cofactors_col0.coeffRef(2) =  cofactor_3x3<MatrixType,2,0>(matrix); | 
 |     determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); | 
 |     invertible = Eigen::numext::abs(determinant) > absDeterminantThreshold; | 
 |     if(!invertible) return; | 
 |     const Scalar invdet = Scalar(1) / determinant; | 
 |     compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); | 
 |   } | 
 | }; | 
 |  | 
 | /**************************** | 
 | *** Size 4 implementation *** | 
 | ****************************/ | 
 |  | 
 | template<typename Derived> | 
 | EIGEN_DEVICE_FUNC  | 
 | inline const typename Derived::Scalar general_det3_helper | 
 | (const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3) | 
 | { | 
 |   return matrix.coeff(i1,j1) | 
 |          * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2)); | 
 | } | 
 |  | 
 | template<typename MatrixType, int i, int j> | 
 | EIGEN_DEVICE_FUNC  | 
 | inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) | 
 | { | 
 |   enum { | 
 |     i1 = (i+1) % 4, | 
 |     i2 = (i+2) % 4, | 
 |     i3 = (i+3) % 4, | 
 |     j1 = (j+1) % 4, | 
 |     j2 = (j+2) % 4, | 
 |     j3 = (j+3) % 4 | 
 |   }; | 
 |   return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) | 
 |        + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) | 
 |        + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); | 
 | } | 
 |  | 
 | template<int Arch, typename Scalar, typename MatrixType, typename ResultType> | 
 | struct compute_inverse_size4 | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static void run(const MatrixType& matrix, ResultType& result) | 
 |   { | 
 |     result.coeffRef(0,0) =  cofactor_4x4<MatrixType,0,0>(matrix); | 
 |     result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix); | 
 |     result.coeffRef(2,0) =  cofactor_4x4<MatrixType,0,2>(matrix); | 
 |     result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix); | 
 |     result.coeffRef(0,2) =  cofactor_4x4<MatrixType,2,0>(matrix); | 
 |     result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix); | 
 |     result.coeffRef(2,2) =  cofactor_4x4<MatrixType,2,2>(matrix); | 
 |     result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix); | 
 |     result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix); | 
 |     result.coeffRef(1,1) =  cofactor_4x4<MatrixType,1,1>(matrix); | 
 |     result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix); | 
 |     result.coeffRef(3,1) =  cofactor_4x4<MatrixType,1,3>(matrix); | 
 |     result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix); | 
 |     result.coeffRef(1,3) =  cofactor_4x4<MatrixType,3,1>(matrix); | 
 |     result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix); | 
 |     result.coeffRef(3,3) =  cofactor_4x4<MatrixType,3,3>(matrix); | 
 |     result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct compute_inverse<MatrixType, ResultType, 4> | 
 |  : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar, | 
 |                             MatrixType, ResultType> | 
 | { | 
 | }; | 
 |  | 
 | template<typename MatrixType, typename ResultType> | 
 | struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4> | 
 | { | 
 |   EIGEN_DEVICE_FUNC | 
 |   static inline void run( | 
 |     const MatrixType& matrix, | 
 |     const typename MatrixType::RealScalar& absDeterminantThreshold, | 
 |     ResultType& inverse, | 
 |     typename ResultType::Scalar& determinant, | 
 |     bool& invertible | 
 |   ) | 
 |   { | 
 |     using std::abs; | 
 |     determinant = matrix.determinant(); | 
 |     invertible = abs(determinant) > absDeterminantThreshold; | 
 |     if(invertible && extract_data(matrix) != extract_data(inverse)) { | 
 |       compute_inverse<MatrixType, ResultType>::run(matrix, inverse); | 
 |     } | 
 |     else if(invertible) { | 
 |       MatrixType matrix_t = matrix; | 
 |       compute_inverse<MatrixType, ResultType>::run(matrix_t, inverse); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | /************************* | 
 | *** MatrixBase methods *** | 
 | *************************/ | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | namespace internal { | 
 |  | 
 | // Specialization for "dense = dense_xpr.inverse()" | 
 | template<typename DstXprType, typename XprType> | 
 | struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense> | 
 | { | 
 |   typedef Inverse<XprType> SrcXprType; | 
 |   EIGEN_DEVICE_FUNC | 
 |   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &) | 
 |   { | 
 |     Index dstRows = src.rows(); | 
 |     Index dstCols = src.cols(); | 
 |     if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) | 
 |       dst.resize(dstRows, dstCols); | 
 |      | 
 |     const int Size = plain_enum_min(XprType::ColsAtCompileTime, DstXprType::ColsAtCompileTime); | 
 |     EIGEN_ONLY_USED_FOR_DEBUG(Size); | 
 |     eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst))) | 
 |               && "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); | 
 |  | 
 |     typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type  ActualXprType; | 
 |     typedef typename internal::remove_all<ActualXprType>::type                        ActualXprTypeCleanded; | 
 |      | 
 |     ActualXprType actual_xpr(src.nestedExpression()); | 
 |      | 
 |     compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst); | 
 |   } | 
 | }; | 
 |  | 
 |    | 
 | } // end namespace internal | 
 |  | 
 | /** \lu_module | 
 |   * | 
 |   * \returns the matrix inverse of this matrix. | 
 |   * | 
 |   * For small fixed sizes up to 4x4, this method uses cofactors. | 
 |   * In the general case, this method uses class PartialPivLU. | 
 |   * | 
 |   * \note This matrix must be invertible, otherwise the result is undefined. If you need an | 
 |   * invertibility check, do the following: | 
 |   * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). | 
 |   * \li for the general case, use class FullPivLU. | 
 |   * | 
 |   * Example: \include MatrixBase_inverse.cpp | 
 |   * Output: \verbinclude MatrixBase_inverse.out | 
 |   * | 
 |   * \sa computeInverseAndDetWithCheck() | 
 |   */ | 
 | template<typename Derived> | 
 | EIGEN_DEVICE_FUNC | 
 | inline const Inverse<Derived> MatrixBase<Derived>::inverse() const | 
 | { | 
 |   EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) | 
 |   eigen_assert(rows() == cols()); | 
 |   return Inverse<Derived>(derived()); | 
 | } | 
 |  | 
 | /** \lu_module | 
 |   * | 
 |   * Computation of matrix inverse and determinant, with invertibility check. | 
 |   * | 
 |   * This is only for fixed-size square matrices of size up to 4x4. | 
 |   * | 
 |   * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. | 
 |   * | 
 |   * \param inverse Reference to the matrix in which to store the inverse. | 
 |   * \param determinant Reference to the variable in which to store the determinant. | 
 |   * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. | 
 |   * \param absDeterminantThreshold Optional parameter controlling the invertibility check. | 
 |   *                                The matrix will be declared invertible if the absolute value of its | 
 |   *                                determinant is greater than this threshold. | 
 |   * | 
 |   * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp | 
 |   * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out | 
 |   * | 
 |   * \sa inverse(), computeInverseWithCheck() | 
 |   */ | 
 | template<typename Derived> | 
 | template<typename ResultType> | 
 | inline void MatrixBase<Derived>::computeInverseAndDetWithCheck( | 
 |     ResultType& inverse, | 
 |     typename ResultType::Scalar& determinant, | 
 |     bool& invertible, | 
 |     const RealScalar& absDeterminantThreshold | 
 |   ) const | 
 | { | 
 |   // i'd love to put some static assertions there, but SFINAE means that they have no effect... | 
 |   eigen_assert(rows() == cols()); | 
 |   // for 2x2, it's worth giving a chance to avoid evaluating. | 
 |   // for larger sizes, evaluating has negligible cost and limits code size. | 
 |   typedef typename internal::conditional< | 
 |     RowsAtCompileTime == 2, | 
 |     typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type, | 
 |     PlainObject | 
 |   >::type MatrixType; | 
 |   internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run | 
 |     (derived(), absDeterminantThreshold, inverse, determinant, invertible); | 
 | } | 
 |  | 
 | /** \lu_module | 
 |   * | 
 |   * Computation of matrix inverse, with invertibility check. | 
 |   * | 
 |   * This is only for fixed-size square matrices of size up to 4x4. | 
 |   * | 
 |   * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. | 
 |   * | 
 |   * \param inverse Reference to the matrix in which to store the inverse. | 
 |   * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. | 
 |   * \param absDeterminantThreshold Optional parameter controlling the invertibility check. | 
 |   *                                The matrix will be declared invertible if the absolute value of its | 
 |   *                                determinant is greater than this threshold. | 
 |   * | 
 |   * Example: \include MatrixBase_computeInverseWithCheck.cpp | 
 |   * Output: \verbinclude MatrixBase_computeInverseWithCheck.out | 
 |   * | 
 |   * \sa inverse(), computeInverseAndDetWithCheck() | 
 |   */ | 
 | template<typename Derived> | 
 | template<typename ResultType> | 
 | inline void MatrixBase<Derived>::computeInverseWithCheck( | 
 |     ResultType& inverse, | 
 |     bool& invertible, | 
 |     const RealScalar& absDeterminantThreshold | 
 |   ) const | 
 | { | 
 |   Scalar determinant; | 
 |   // i'd love to put some static assertions there, but SFINAE means that they have no effect... | 
 |   eigen_assert(rows() == cols()); | 
 |   computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); | 
 | } | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_INVERSE_IMPL_H |