|  | /* chpmv.f -- translated by f2c (version 20100827). | 
|  | You must link the resulting object file with libf2c: | 
|  | on Microsoft Windows system, link with libf2c.lib; | 
|  | on Linux or Unix systems, link with .../path/to/libf2c.a -lm | 
|  | or, if you install libf2c.a in a standard place, with -lf2c -lm | 
|  | -- in that order, at the end of the command line, as in | 
|  | cc *.o -lf2c -lm | 
|  | Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | 
|  |  | 
|  | http://www.netlib.org/f2c/libf2c.zip | 
|  | */ | 
|  |  | 
|  | #include "datatypes.h" | 
|  |  | 
|  | /* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex * | 
|  | ap, complex *x, integer *incx, complex *beta, complex *y, integer * | 
|  | incy, ftnlen uplo_len) | 
|  | { | 
|  | /* System generated locals */ | 
|  | integer i__1, i__2, i__3, i__4, i__5; | 
|  | real r__1; | 
|  | complex q__1, q__2, q__3, q__4; | 
|  |  | 
|  | /* Builtin functions */ | 
|  | void r_cnjg(complex *, complex *); | 
|  |  | 
|  | /* Local variables */ | 
|  | integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info; | 
|  | complex temp1, temp2; | 
|  | extern logical lsame_(char *, char *, ftnlen, ftnlen); | 
|  | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); | 
|  |  | 
|  | /*     .. Scalar Arguments .. */ | 
|  | /*     .. */ | 
|  | /*     .. Array Arguments .. */ | 
|  | /*     .. */ | 
|  |  | 
|  | /*  Purpose */ | 
|  | /*  ======= */ | 
|  |  | 
|  | /*  CHPMV  performs the matrix-vector operation */ | 
|  |  | 
|  | /*     y := alpha*A*x + beta*y, */ | 
|  |  | 
|  | /*  where alpha and beta are scalars, x and y are n element vectors and */ | 
|  | /*  A is an n by n hermitian matrix, supplied in packed form. */ | 
|  |  | 
|  | /*  Arguments */ | 
|  | /*  ========== */ | 
|  |  | 
|  | /*  UPLO   - CHARACTER*1. */ | 
|  | /*           On entry, UPLO specifies whether the upper or lower */ | 
|  | /*           triangular part of the matrix A is supplied in the packed */ | 
|  | /*           array AP as follows: */ | 
|  |  | 
|  | /*              UPLO = 'U' or 'u'   The upper triangular part of A is */ | 
|  | /*                                  supplied in AP. */ | 
|  |  | 
|  | /*              UPLO = 'L' or 'l'   The lower triangular part of A is */ | 
|  | /*                                  supplied in AP. */ | 
|  |  | 
|  | /*           Unchanged on exit. */ | 
|  |  | 
|  | /*  N      - INTEGER. */ | 
|  | /*           On entry, N specifies the order of the matrix A. */ | 
|  | /*           N must be at least zero. */ | 
|  | /*           Unchanged on exit. */ | 
|  |  | 
|  | /*  ALPHA  - COMPLEX         . */ | 
|  | /*           On entry, ALPHA specifies the scalar alpha. */ | 
|  | /*           Unchanged on exit. */ | 
|  |  | 
|  | /*  AP     - COMPLEX          array of DIMENSION at least */ | 
|  | /*           ( ( n*( n + 1 ) )/2 ). */ | 
|  | /*           Before entry with UPLO = 'U' or 'u', the array AP must */ | 
|  | /*           contain the upper triangular part of the hermitian matrix */ | 
|  | /*           packed sequentially, column by column, so that AP( 1 ) */ | 
|  | /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ | 
|  | /*           and a( 2, 2 ) respectively, and so on. */ | 
|  | /*           Before entry with UPLO = 'L' or 'l', the array AP must */ | 
|  | /*           contain the lower triangular part of the hermitian matrix */ | 
|  | /*           packed sequentially, column by column, so that AP( 1 ) */ | 
|  | /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ | 
|  | /*           and a( 3, 1 ) respectively, and so on. */ | 
|  | /*           Note that the imaginary parts of the diagonal elements need */ | 
|  | /*           not be set and are assumed to be zero. */ | 
|  | /*           Unchanged on exit. */ | 
|  |  | 
|  | /*  X      - COMPLEX          array of dimension at least */ | 
|  | /*           ( 1 + ( n - 1 )*abs( INCX ) ). */ | 
|  | /*           Before entry, the incremented array X must contain the n */ | 
|  | /*           element vector x. */ | 
|  | /*           Unchanged on exit. */ | 
|  |  | 
|  | /*  INCX   - INTEGER. */ | 
|  | /*           On entry, INCX specifies the increment for the elements of */ | 
|  | /*           X. INCX must not be zero. */ | 
|  | /*           Unchanged on exit. */ | 
|  |  | 
|  | /*  BETA   - COMPLEX         . */ | 
|  | /*           On entry, BETA specifies the scalar beta. When BETA is */ | 
|  | /*           supplied as zero then Y need not be set on input. */ | 
|  | /*           Unchanged on exit. */ | 
|  |  | 
|  | /*  Y      - COMPLEX          array of dimension at least */ | 
|  | /*           ( 1 + ( n - 1 )*abs( INCY ) ). */ | 
|  | /*           Before entry, the incremented array Y must contain the n */ | 
|  | /*           element vector y. On exit, Y is overwritten by the updated */ | 
|  | /*           vector y. */ | 
|  |  | 
|  | /*  INCY   - INTEGER. */ | 
|  | /*           On entry, INCY specifies the increment for the elements of */ | 
|  | /*           Y. INCY must not be zero. */ | 
|  | /*           Unchanged on exit. */ | 
|  |  | 
|  | /*  Further Details */ | 
|  | /*  =============== */ | 
|  |  | 
|  | /*  Level 2 Blas routine. */ | 
|  |  | 
|  | /*  -- Written on 22-October-1986. */ | 
|  | /*     Jack Dongarra, Argonne National Lab. */ | 
|  | /*     Jeremy Du Croz, Nag Central Office. */ | 
|  | /*     Sven Hammarling, Nag Central Office. */ | 
|  | /*     Richard Hanson, Sandia National Labs. */ | 
|  |  | 
|  | /*  ===================================================================== */ | 
|  |  | 
|  | /*     .. Parameters .. */ | 
|  | /*     .. */ | 
|  | /*     .. Local Scalars .. */ | 
|  | /*     .. */ | 
|  | /*     .. External Functions .. */ | 
|  | /*     .. */ | 
|  | /*     .. External Subroutines .. */ | 
|  | /*     .. */ | 
|  | /*     .. Intrinsic Functions .. */ | 
|  | /*     .. */ | 
|  |  | 
|  | /*     Test the input parameters. */ | 
|  |  | 
|  | /* Parameter adjustments */ | 
|  | --y; | 
|  | --x; | 
|  | --ap; | 
|  |  | 
|  | /* Function Body */ | 
|  | info = 0; | 
|  | if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( | 
|  | ftnlen)1, (ftnlen)1)) { | 
|  | info = 1; | 
|  | } else if (*n < 0) { | 
|  | info = 2; | 
|  | } else if (*incx == 0) { | 
|  | info = 6; | 
|  | } else if (*incy == 0) { | 
|  | info = 9; | 
|  | } | 
|  | if (info != 0) { | 
|  | xerbla_("CHPMV ", &info, (ftnlen)6); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*     Quick return if possible. */ | 
|  |  | 
|  | if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && | 
|  | beta->i == 0.f))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*     Set up the start points in  X  and  Y. */ | 
|  |  | 
|  | if (*incx > 0) { | 
|  | kx = 1; | 
|  | } else { | 
|  | kx = 1 - (*n - 1) * *incx; | 
|  | } | 
|  | if (*incy > 0) { | 
|  | ky = 1; | 
|  | } else { | 
|  | ky = 1 - (*n - 1) * *incy; | 
|  | } | 
|  |  | 
|  | /*     Start the operations. In this version the elements of the array AP */ | 
|  | /*     are accessed sequentially with one pass through AP. */ | 
|  |  | 
|  | /*     First form  y := beta*y. */ | 
|  |  | 
|  | if (beta->r != 1.f || beta->i != 0.f) { | 
|  | if (*incy == 1) { | 
|  | if (beta->r == 0.f && beta->i == 0.f) { | 
|  | i__1 = *n; | 
|  | for (i__ = 1; i__ <= i__1; ++i__) { | 
|  | i__2 = i__; | 
|  | y[i__2].r = 0.f, y[i__2].i = 0.f; | 
|  | /* L10: */ | 
|  | } | 
|  | } else { | 
|  | i__1 = *n; | 
|  | for (i__ = 1; i__ <= i__1; ++i__) { | 
|  | i__2 = i__; | 
|  | i__3 = i__; | 
|  | q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, | 
|  | q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] | 
|  | .r; | 
|  | y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
|  | /* L20: */ | 
|  | } | 
|  | } | 
|  | } else { | 
|  | iy = ky; | 
|  | if (beta->r == 0.f && beta->i == 0.f) { | 
|  | i__1 = *n; | 
|  | for (i__ = 1; i__ <= i__1; ++i__) { | 
|  | i__2 = iy; | 
|  | y[i__2].r = 0.f, y[i__2].i = 0.f; | 
|  | iy += *incy; | 
|  | /* L30: */ | 
|  | } | 
|  | } else { | 
|  | i__1 = *n; | 
|  | for (i__ = 1; i__ <= i__1; ++i__) { | 
|  | i__2 = iy; | 
|  | i__3 = iy; | 
|  | q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, | 
|  | q__1.i = beta->r * y[i__3].i + beta->i * y[i__3] | 
|  | .r; | 
|  | y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
|  | iy += *incy; | 
|  | /* L40: */ | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (alpha->r == 0.f && alpha->i == 0.f) { | 
|  | return 0; | 
|  | } | 
|  | kk = 1; | 
|  | if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { | 
|  |  | 
|  | /*        Form  y  when AP contains the upper triangle. */ | 
|  |  | 
|  | if (*incx == 1 && *incy == 1) { | 
|  | i__1 = *n; | 
|  | for (j = 1; j <= i__1; ++j) { | 
|  | i__2 = j; | 
|  | q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = | 
|  | alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
|  | temp1.r = q__1.r, temp1.i = q__1.i; | 
|  | temp2.r = 0.f, temp2.i = 0.f; | 
|  | k = kk; | 
|  | i__2 = j - 1; | 
|  | for (i__ = 1; i__ <= i__2; ++i__) { | 
|  | i__3 = i__; | 
|  | i__4 = i__; | 
|  | i__5 = k; | 
|  | q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, | 
|  | q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] | 
|  | .r; | 
|  | q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | 
|  | y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
|  | r_cnjg(&q__3, &ap[k]); | 
|  | i__3 = i__; | 
|  | q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = | 
|  | q__3.r * x[i__3].i + q__3.i * x[i__3].r; | 
|  | q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | 
|  | temp2.r = q__1.r, temp2.i = q__1.i; | 
|  | ++k; | 
|  | /* L50: */ | 
|  | } | 
|  | i__2 = j; | 
|  | i__3 = j; | 
|  | i__4 = kk + j - 1; | 
|  | r__1 = ap[i__4].r; | 
|  | q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; | 
|  | q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; | 
|  | q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = | 
|  | alpha->r * temp2.i + alpha->i * temp2.r; | 
|  | q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; | 
|  | y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
|  | kk += j; | 
|  | /* L60: */ | 
|  | } | 
|  | } else { | 
|  | jx = kx; | 
|  | jy = ky; | 
|  | i__1 = *n; | 
|  | for (j = 1; j <= i__1; ++j) { | 
|  | i__2 = jx; | 
|  | q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = | 
|  | alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
|  | temp1.r = q__1.r, temp1.i = q__1.i; | 
|  | temp2.r = 0.f, temp2.i = 0.f; | 
|  | ix = kx; | 
|  | iy = ky; | 
|  | i__2 = kk + j - 2; | 
|  | for (k = kk; k <= i__2; ++k) { | 
|  | i__3 = iy; | 
|  | i__4 = iy; | 
|  | i__5 = k; | 
|  | q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, | 
|  | q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] | 
|  | .r; | 
|  | q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | 
|  | y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
|  | r_cnjg(&q__3, &ap[k]); | 
|  | i__3 = ix; | 
|  | q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = | 
|  | q__3.r * x[i__3].i + q__3.i * x[i__3].r; | 
|  | q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | 
|  | temp2.r = q__1.r, temp2.i = q__1.i; | 
|  | ix += *incx; | 
|  | iy += *incy; | 
|  | /* L70: */ | 
|  | } | 
|  | i__2 = jy; | 
|  | i__3 = jy; | 
|  | i__4 = kk + j - 1; | 
|  | r__1 = ap[i__4].r; | 
|  | q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; | 
|  | q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i; | 
|  | q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = | 
|  | alpha->r * temp2.i + alpha->i * temp2.r; | 
|  | q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; | 
|  | y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
|  | jx += *incx; | 
|  | jy += *incy; | 
|  | kk += j; | 
|  | /* L80: */ | 
|  | } | 
|  | } | 
|  | } else { | 
|  |  | 
|  | /*        Form  y  when AP contains the lower triangle. */ | 
|  |  | 
|  | if (*incx == 1 && *incy == 1) { | 
|  | i__1 = *n; | 
|  | for (j = 1; j <= i__1; ++j) { | 
|  | i__2 = j; | 
|  | q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = | 
|  | alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
|  | temp1.r = q__1.r, temp1.i = q__1.i; | 
|  | temp2.r = 0.f, temp2.i = 0.f; | 
|  | i__2 = j; | 
|  | i__3 = j; | 
|  | i__4 = kk; | 
|  | r__1 = ap[i__4].r; | 
|  | q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; | 
|  | q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | 
|  | y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
|  | k = kk + 1; | 
|  | i__2 = *n; | 
|  | for (i__ = j + 1; i__ <= i__2; ++i__) { | 
|  | i__3 = i__; | 
|  | i__4 = i__; | 
|  | i__5 = k; | 
|  | q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, | 
|  | q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] | 
|  | .r; | 
|  | q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | 
|  | y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
|  | r_cnjg(&q__3, &ap[k]); | 
|  | i__3 = i__; | 
|  | q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = | 
|  | q__3.r * x[i__3].i + q__3.i * x[i__3].r; | 
|  | q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | 
|  | temp2.r = q__1.r, temp2.i = q__1.i; | 
|  | ++k; | 
|  | /* L90: */ | 
|  | } | 
|  | i__2 = j; | 
|  | i__3 = j; | 
|  | q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = | 
|  | alpha->r * temp2.i + alpha->i * temp2.r; | 
|  | q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | 
|  | y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
|  | kk += *n - j + 1; | 
|  | /* L100: */ | 
|  | } | 
|  | } else { | 
|  | jx = kx; | 
|  | jy = ky; | 
|  | i__1 = *n; | 
|  | for (j = 1; j <= i__1; ++j) { | 
|  | i__2 = jx; | 
|  | q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = | 
|  | alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
|  | temp1.r = q__1.r, temp1.i = q__1.i; | 
|  | temp2.r = 0.f, temp2.i = 0.f; | 
|  | i__2 = jy; | 
|  | i__3 = jy; | 
|  | i__4 = kk; | 
|  | r__1 = ap[i__4].r; | 
|  | q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; | 
|  | q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | 
|  | y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
|  | ix = jx; | 
|  | iy = jy; | 
|  | i__2 = kk + *n - j; | 
|  | for (k = kk + 1; k <= i__2; ++k) { | 
|  | ix += *incx; | 
|  | iy += *incy; | 
|  | i__3 = iy; | 
|  | i__4 = iy; | 
|  | i__5 = k; | 
|  | q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, | 
|  | q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5] | 
|  | .r; | 
|  | q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | 
|  | y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
|  | r_cnjg(&q__3, &ap[k]); | 
|  | i__3 = ix; | 
|  | q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i = | 
|  | q__3.r * x[i__3].i + q__3.i * x[i__3].r; | 
|  | q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | 
|  | temp2.r = q__1.r, temp2.i = q__1.i; | 
|  | /* L110: */ | 
|  | } | 
|  | i__2 = jy; | 
|  | i__3 = jy; | 
|  | q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = | 
|  | alpha->r * temp2.i + alpha->i * temp2.r; | 
|  | q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | 
|  | y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
|  | jx += *incx; | 
|  | jy += *incy; | 
|  | kk += *n - j + 1; | 
|  | /* L120: */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | /*     End of CHPMV . */ | 
|  |  | 
|  | } /* chpmv_ */ | 
|  |  |