|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/Core> | 
|  | #include <Eigen/Geometry> | 
|  |  | 
|  | #include <Eigen/LU> // required for MatrixBase::determinant | 
|  | #include <Eigen/SVD> // required for SVD | 
|  |  | 
|  | using namespace Eigen; | 
|  |  | 
|  | //  Constructs a random matrix from the unitary group U(size). | 
|  | template <typename T> | 
|  | Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixUnitary(int size) | 
|  | { | 
|  | typedef T Scalar; | 
|  | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType; | 
|  |  | 
|  | MatrixType Q; | 
|  |  | 
|  | int max_tries = 40; | 
|  | bool is_unitary = false; | 
|  |  | 
|  | while (!is_unitary && max_tries > 0) | 
|  | { | 
|  | // initialize random matrix | 
|  | Q = MatrixType::Random(size, size); | 
|  |  | 
|  | // orthogonalize columns using the Gram-Schmidt algorithm | 
|  | for (int col = 0; col < size; ++col) | 
|  | { | 
|  | typename MatrixType::ColXpr colVec = Q.col(col); | 
|  | for (int prevCol = 0; prevCol < col; ++prevCol) | 
|  | { | 
|  | typename MatrixType::ColXpr prevColVec = Q.col(prevCol); | 
|  | colVec -= colVec.dot(prevColVec)*prevColVec; | 
|  | } | 
|  | Q.col(col) = colVec.normalized(); | 
|  | } | 
|  |  | 
|  | // this additional orthogonalization is not necessary in theory but should enhance | 
|  | // the numerical orthogonality of the matrix | 
|  | for (int row = 0; row < size; ++row) | 
|  | { | 
|  | typename MatrixType::RowXpr rowVec = Q.row(row); | 
|  | for (int prevRow = 0; prevRow < row; ++prevRow) | 
|  | { | 
|  | typename MatrixType::RowXpr prevRowVec = Q.row(prevRow); | 
|  | rowVec -= rowVec.dot(prevRowVec)*prevRowVec; | 
|  | } | 
|  | Q.row(row) = rowVec.normalized(); | 
|  | } | 
|  |  | 
|  | // final check | 
|  | is_unitary = Q.isUnitary(); | 
|  | --max_tries; | 
|  | } | 
|  |  | 
|  | if (max_tries == 0) | 
|  | eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!"); | 
|  |  | 
|  | return Q; | 
|  | } | 
|  |  | 
|  | //  Constructs a random matrix from the special unitary group SU(size). | 
|  | template <typename T> | 
|  | Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic> randMatrixSpecialUnitary(int size) | 
|  | { | 
|  | typedef T Scalar; | 
|  |  | 
|  | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixType; | 
|  |  | 
|  | // initialize unitary matrix | 
|  | MatrixType Q = randMatrixUnitary<Scalar>(size); | 
|  |  | 
|  | // tweak the first column to make the determinant be 1 | 
|  | Q.col(0) *= numext::conj(Q.determinant()); | 
|  |  | 
|  | return Q; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void run_test(int dim, int num_elements) | 
|  | { | 
|  | using std::abs; | 
|  | typedef typename internal::traits<MatrixType>::Scalar Scalar; | 
|  | typedef Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> MatrixX; | 
|  | typedef Matrix<Scalar, Eigen::Dynamic, 1> VectorX; | 
|  |  | 
|  | // MUST be positive because in any other case det(cR_t) may become negative for | 
|  | // odd dimensions! | 
|  | const Scalar c = abs(internal::random<Scalar>()); | 
|  |  | 
|  | MatrixX R = randMatrixSpecialUnitary<Scalar>(dim); | 
|  | VectorX t = Scalar(50)*VectorX::Random(dim,1); | 
|  |  | 
|  | MatrixX cR_t = MatrixX::Identity(dim+1,dim+1); | 
|  | cR_t.block(0,0,dim,dim) = c*R; | 
|  | cR_t.block(0,dim,dim,1) = t; | 
|  |  | 
|  | MatrixX src = MatrixX::Random(dim+1, num_elements); | 
|  | src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1)); | 
|  |  | 
|  | MatrixX dst = cR_t*src; | 
|  |  | 
|  | MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements)); | 
|  |  | 
|  | const Scalar error = ( cR_t_umeyama*src - dst ).norm() / dst.norm(); | 
|  | VERIFY(error < Scalar(40)*std::numeric_limits<Scalar>::epsilon()); | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dimension> | 
|  | void run_fixed_size_test(int num_elements) | 
|  | { | 
|  | using std::abs; | 
|  | typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX; | 
|  | typedef Matrix<Scalar, Dimension+1, Dimension+1> HomMatrix; | 
|  | typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix; | 
|  | typedef Matrix<Scalar, Dimension, 1> FixedVector; | 
|  |  | 
|  | const int dim = Dimension; | 
|  |  | 
|  | // MUST be positive because in any other case det(cR_t) may become negative for | 
|  | // odd dimensions! | 
|  | // Also if c is to small compared to t.norm(), problem is ill-posed (cf. Bug 744) | 
|  | const Scalar c = internal::random<Scalar>(0.5, 2.0); | 
|  |  | 
|  | FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim); | 
|  | FixedVector t = Scalar(32)*FixedVector::Random(dim,1); | 
|  |  | 
|  | HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1); | 
|  | cR_t.block(0,0,dim,dim) = c*R; | 
|  | cR_t.block(0,dim,dim,1) = t; | 
|  |  | 
|  | MatrixX src = MatrixX::Random(dim+1, num_elements); | 
|  | src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1)); | 
|  |  | 
|  | MatrixX dst = cR_t*src; | 
|  |  | 
|  | Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements); | 
|  | Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements); | 
|  |  | 
|  | HomMatrix cR_t_umeyama = umeyama(src_block, dst_block); | 
|  |  | 
|  | const Scalar error = ( cR_t_umeyama*src - dst ).squaredNorm(); | 
|  |  | 
|  | VERIFY(error < Scalar(16)*std::numeric_limits<Scalar>::epsilon()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(umeyama) | 
|  | { | 
|  | for (int i=0; i<g_repeat; ++i) | 
|  | { | 
|  | const int num_elements = internal::random<int>(40,500); | 
|  |  | 
|  | // works also for dimensions bigger than 3... | 
|  | for (int dim=2; dim<8; ++dim) | 
|  | { | 
|  | CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements)); | 
|  | CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements)); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements))); | 
|  | CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements))); | 
|  | CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements))); | 
|  |  | 
|  | CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements))); | 
|  | CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements))); | 
|  | CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements))); | 
|  | } | 
|  |  | 
|  | // Those two calls don't compile and result in meaningful error messages! | 
|  | // umeyama(MatrixXcf(),MatrixXcf()); | 
|  | // umeyama(MatrixXcd(),MatrixXcd()); | 
|  | } |