| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void array_for_matrix(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; |
| typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols); |
| |
| ColVectorType cv1 = ColVectorType::Random(rows); |
| RowVectorType rv1 = RowVectorType::Random(cols); |
| |
| Scalar s1 = internal::random<Scalar>(), |
| s2 = internal::random<Scalar>(); |
| |
| // scalar addition |
| VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array()); |
| VERIFY_IS_APPROX((m1.array() + s1).matrix(), MatrixType::Constant(rows,cols,s1) + m1); |
| VERIFY_IS_APPROX(((m1*Scalar(2)).array() - s2).matrix(), (m1+m1) - MatrixType::Constant(rows,cols,s2) ); |
| m3 = m1; |
| m3.array() += s2; |
| VERIFY_IS_APPROX(m3, (m1.array() + s2).matrix()); |
| m3 = m1; |
| m3.array() -= s1; |
| VERIFY_IS_APPROX(m3, (m1.array() - s1).matrix()); |
| |
| // reductions |
| VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum().sum() - m1.sum(), m1.squaredNorm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum().sum() - m1.sum(), m1.squaredNorm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(m1.colwise().sum() + m2.colwise().sum() - (m1+m2).colwise().sum(), (m1+m2).squaredNorm()); |
| VERIFY_IS_MUCH_SMALLER_THAN(m1.rowwise().sum() - m2.rowwise().sum() - (m1-m2).rowwise().sum(), (m1-m2).squaredNorm()); |
| VERIFY_IS_APPROX(m1.colwise().sum(), m1.colwise().redux(internal::scalar_sum_op<Scalar>())); |
| |
| // vector-wise ops |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.colwise() += cv1, m1.colwise() + cv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.colwise() -= cv1, m1.colwise() - cv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.rowwise() += rv1, m1.rowwise() + rv1); |
| m3 = m1; |
| VERIFY_IS_APPROX(m3.rowwise() -= rv1, m1.rowwise() - rv1); |
| |
| // empty objects |
| VERIFY_IS_APPROX(m1.block(0,0,0,cols).colwise().sum(), RowVectorType::Zero(cols)); |
| VERIFY_IS_APPROX(m1.block(0,0,rows,0).rowwise().prod(), ColVectorType::Ones(rows)); |
| |
| // verify the const accessors exist |
| const Scalar& ref_m1 = m.matrix().array().coeffRef(0); |
| const Scalar& ref_m2 = m.matrix().array().coeffRef(0,0); |
| const Scalar& ref_a1 = m.array().matrix().coeffRef(0); |
| const Scalar& ref_a2 = m.array().matrix().coeffRef(0,0); |
| VERIFY(&ref_a1 == &ref_m1); |
| VERIFY(&ref_a2 == &ref_m2); |
| |
| // Check write accessors: |
| m1.array().coeffRef(0,0) = 1; |
| VERIFY_IS_APPROX(m1(0,0),Scalar(1)); |
| m1.array()(0,0) = 2; |
| VERIFY_IS_APPROX(m1(0,0),Scalar(2)); |
| m1.array().matrix().coeffRef(0,0) = 3; |
| VERIFY_IS_APPROX(m1(0,0),Scalar(3)); |
| m1.array().matrix()(0,0) = 4; |
| VERIFY_IS_APPROX(m1(0,0),Scalar(4)); |
| } |
| |
| template<typename MatrixType> void comparisons(const MatrixType& m) |
| { |
| using std::abs; |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| Index r = internal::random<Index>(0, rows-1), |
| c = internal::random<Index>(0, cols-1); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols); |
| |
| VERIFY(((m1.array() + Scalar(1)) > m1.array()).all()); |
| VERIFY(((m1.array() - Scalar(1)) < m1.array()).all()); |
| if (rows*cols>1) |
| { |
| m3 = m1; |
| m3(r,c) += 1; |
| VERIFY(! (m1.array() < m3.array()).all() ); |
| VERIFY(! (m1.array() > m3.array()).all() ); |
| } |
| |
| // comparisons to scalar |
| VERIFY( (m1.array() != (m1(r,c)+1) ).any() ); |
| VERIFY( (m1.array() > (m1(r,c)-1) ).any() ); |
| VERIFY( (m1.array() < (m1(r,c)+1) ).any() ); |
| VERIFY( (m1.array() == m1(r,c) ).any() ); |
| VERIFY( m1.cwiseEqual(m1(r,c)).any() ); |
| |
| // test Select |
| VERIFY_IS_APPROX( (m1.array()<m2.array()).select(m1,m2), m1.cwiseMin(m2) ); |
| VERIFY_IS_APPROX( (m1.array()>m2.array()).select(m1,m2), m1.cwiseMax(m2) ); |
| Scalar mid = (m1.cwiseAbs().minCoeff() + m1.cwiseAbs().maxCoeff())/Scalar(2); |
| for (int j=0; j<cols; ++j) |
| for (int i=0; i<rows; ++i) |
| m3(i,j) = abs(m1(i,j))<mid ? 0 : m1(i,j); |
| VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array()) |
| .select(MatrixType::Zero(rows,cols),m1), m3); |
| // shorter versions: |
| VERIFY_IS_APPROX( (m1.array().abs()<MatrixType::Constant(rows,cols,mid).array()) |
| .select(0,m1), m3); |
| VERIFY_IS_APPROX( (m1.array().abs()>=MatrixType::Constant(rows,cols,mid).array()) |
| .select(m1,0), m3); |
| // even shorter version: |
| VERIFY_IS_APPROX( (m1.array().abs()<mid).select(0,m1), m3); |
| |
| // count |
| VERIFY(((m1.array().abs()+1)>RealScalar(0.1)).count() == rows*cols); |
| |
| typedef Matrix<typename MatrixType::Index, Dynamic, 1> VectorOfIndices; |
| |
| // TODO allows colwise/rowwise for array |
| VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().colwise().count(), VectorOfIndices::Constant(cols,rows).transpose()); |
| VERIFY_IS_APPROX(((m1.array().abs()+1)>RealScalar(0.1)).matrix().rowwise().count(), VectorOfIndices::Constant(rows, cols)); |
| } |
| |
| template<typename VectorType> void lpNorm(const VectorType& v) |
| { |
| using std::sqrt; |
| VectorType u = VectorType::Random(v.size()); |
| |
| VERIFY_IS_APPROX(u.template lpNorm<Infinity>(), u.cwiseAbs().maxCoeff()); |
| VERIFY_IS_APPROX(u.template lpNorm<1>(), u.cwiseAbs().sum()); |
| VERIFY_IS_APPROX(u.template lpNorm<2>(), sqrt(u.array().abs().square().sum())); |
| VERIFY_IS_APPROX(numext::pow(u.template lpNorm<5>(), typename VectorType::RealScalar(5)), u.array().abs().pow(5).sum()); |
| } |
| |
| template<typename MatrixType> void cwise_min_max(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols); |
| |
| // min/max with array |
| Scalar maxM1 = m1.maxCoeff(); |
| Scalar minM1 = m1.minCoeff(); |
| |
| VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin(MatrixType::Constant(rows,cols, minM1))); |
| VERIFY_IS_APPROX(m1, m1.cwiseMin(MatrixType::Constant(rows,cols, maxM1))); |
| |
| VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax(MatrixType::Constant(rows,cols, maxM1))); |
| VERIFY_IS_APPROX(m1, m1.cwiseMax(MatrixType::Constant(rows,cols, minM1))); |
| |
| // min/max with scalar input |
| VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1), m1.cwiseMin( minM1)); |
| VERIFY_IS_APPROX(m1, m1.cwiseMin(maxM1)); |
| VERIFY_IS_APPROX(-m1, (-m1).cwiseMin(-minM1)); |
| VERIFY_IS_APPROX(-m1.array(), ((-m1).array().min)( -minM1)); |
| |
| VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1), m1.cwiseMax( maxM1)); |
| VERIFY_IS_APPROX(m1, m1.cwiseMax(minM1)); |
| VERIFY_IS_APPROX(-m1, (-m1).cwiseMax(-maxM1)); |
| VERIFY_IS_APPROX(-m1.array(), ((-m1).array().max)(-maxM1)); |
| |
| VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, minM1).array(), (m1.array().min)( minM1)); |
| VERIFY_IS_APPROX(m1.array(), (m1.array().min)( maxM1)); |
| |
| VERIFY_IS_APPROX(MatrixType::Constant(rows,cols, maxM1).array(), (m1.array().max)( maxM1)); |
| VERIFY_IS_APPROX(m1.array(), (m1.array().max)( minM1)); |
| |
| } |
| |
| template<typename MatrixTraits> void resize(const MatrixTraits& t) |
| { |
| typedef typename MatrixTraits::Index Index; |
| typedef typename MatrixTraits::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; |
| typedef Array<Scalar,Dynamic,Dynamic> Array2DType; |
| typedef Matrix<Scalar,Dynamic,1> VectorType; |
| typedef Array<Scalar,Dynamic,1> Array1DType; |
| |
| Index rows = t.rows(), cols = t.cols(); |
| |
| MatrixType m(rows,cols); |
| VectorType v(rows); |
| Array2DType a2(rows,cols); |
| Array1DType a1(rows); |
| |
| m.array().resize(rows+1,cols+1); |
| VERIFY(m.rows()==rows+1 && m.cols()==cols+1); |
| a2.matrix().resize(rows+1,cols+1); |
| VERIFY(a2.rows()==rows+1 && a2.cols()==cols+1); |
| v.array().resize(cols); |
| VERIFY(v.size()==cols); |
| a1.matrix().resize(cols); |
| VERIFY(a1.size()==cols); |
| } |
| |
| void regression_bug_654() |
| { |
| ArrayXf a = RowVectorXf(3); |
| VectorXf v = Array<float,1,Dynamic>(3); |
| } |
| |
| void test_array_for_matrix() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( array_for_matrix(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( array_for_matrix(Matrix2f()) ); |
| CALL_SUBTEST_3( array_for_matrix(Matrix4d()) ); |
| CALL_SUBTEST_4( array_for_matrix(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_5( array_for_matrix(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( array_for_matrix(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( comparisons(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( comparisons(Matrix2f()) ); |
| CALL_SUBTEST_3( comparisons(Matrix4d()) ); |
| CALL_SUBTEST_5( comparisons(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( comparisons(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( cwise_min_max(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( cwise_min_max(Matrix2f()) ); |
| CALL_SUBTEST_3( cwise_min_max(Matrix4d()) ); |
| CALL_SUBTEST_5( cwise_min_max(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( cwise_min_max(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( lpNorm(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( lpNorm(Vector2f()) ); |
| CALL_SUBTEST_7( lpNorm(Vector3d()) ); |
| CALL_SUBTEST_8( lpNorm(Vector4f()) ); |
| CALL_SUBTEST_5( lpNorm(VectorXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_4( lpNorm(VectorXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_4( resize(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_5( resize(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( resize(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| CALL_SUBTEST_6( regression_bug_654() ); |
| } |