|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include "svd_fill.h" | 
|  | #include <limits> | 
|  | #include <Eigen/Eigenvalues> | 
|  | #include <Eigen/SparseCore> | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> void selfadjointeigensolver_essential_check(const MatrixType& m) | 
|  | { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | RealScalar eival_eps = numext::mini<RealScalar>(test_precision<RealScalar>(),  NumTraits<Scalar>::dummy_precision()*20000); | 
|  |  | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymm(m); | 
|  | VERIFY_IS_EQUAL(eiSymm.info(), Success); | 
|  |  | 
|  | RealScalar scaling = m.cwiseAbs().maxCoeff(); | 
|  |  | 
|  | if(scaling<(std::numeric_limits<RealScalar>::min)()) | 
|  | { | 
|  | VERIFY(eiSymm.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); | 
|  | } | 
|  | else | 
|  | { | 
|  | VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiSymm.eigenvectors())/scaling, | 
|  | (eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal())/scaling); | 
|  | } | 
|  | VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues()); | 
|  | VERIFY_IS_UNITARY(eiSymm.eigenvectors()); | 
|  |  | 
|  | if(m.cols()<=4) | 
|  | { | 
|  | SelfAdjointEigenSolver<MatrixType> eiDirect; | 
|  | eiDirect.computeDirect(m); | 
|  | VERIFY_IS_EQUAL(eiDirect.info(), Success); | 
|  | if(! eiSymm.eigenvalues().isApprox(eiDirect.eigenvalues(), eival_eps) ) | 
|  | { | 
|  | std::cerr << "reference eigenvalues: " << eiSymm.eigenvalues().transpose() << "\n" | 
|  | << "obtained eigenvalues:  " << eiDirect.eigenvalues().transpose() << "\n" | 
|  | << "diff:                  " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).transpose() << "\n" | 
|  | << "error (eps):           " << (eiSymm.eigenvalues()-eiDirect.eigenvalues()).norm() / eiSymm.eigenvalues().norm() << "  (" << eival_eps << ")\n"; | 
|  | } | 
|  | if(scaling<(std::numeric_limits<RealScalar>::min)()) | 
|  | { | 
|  | VERIFY(eiDirect.eigenvalues().cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)()); | 
|  | } | 
|  | else | 
|  | { | 
|  | VERIFY_IS_APPROX(eiSymm.eigenvalues()/scaling, eiDirect.eigenvalues()/scaling); | 
|  | VERIFY_IS_APPROX((m.template selfadjointView<Lower>() * eiDirect.eigenvectors())/scaling, | 
|  | (eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal())/scaling); | 
|  | VERIFY_IS_APPROX(m.template selfadjointView<Lower>().eigenvalues()/scaling, eiDirect.eigenvalues()/scaling); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_UNITARY(eiDirect.eigenvectors()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | RealScalar largerEps = 10*test_precision<RealScalar>(); | 
|  |  | 
|  | MatrixType a = MatrixType::Random(rows,cols); | 
|  | MatrixType a1 = MatrixType::Random(rows,cols); | 
|  | MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1; | 
|  | MatrixType symmC = symmA; | 
|  |  | 
|  | svd_fill_random(symmA,Symmetric); | 
|  |  | 
|  | symmA.template triangularView<StrictlyUpper>().setZero(); | 
|  | symmC.template triangularView<StrictlyUpper>().setZero(); | 
|  |  | 
|  | MatrixType b = MatrixType::Random(rows,cols); | 
|  | MatrixType b1 = MatrixType::Random(rows,cols); | 
|  | MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; | 
|  | symmB.template triangularView<StrictlyUpper>().setZero(); | 
|  |  | 
|  | CALL_SUBTEST( selfadjointeigensolver_essential_check(symmA) ); | 
|  |  | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); | 
|  | // generalized eigen pb | 
|  | GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB); | 
|  |  | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false); | 
|  | VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success); | 
|  | VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues()); | 
|  |  | 
|  | // generalized eigen problem Ax = lBx | 
|  | eiSymmGen.compute(symmC, symmB,Ax_lBx); | 
|  | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); | 
|  | VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox( | 
|  | symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); | 
|  |  | 
|  | // generalized eigen problem BAx = lx | 
|  | eiSymmGen.compute(symmC, symmB,BAx_lx); | 
|  | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); | 
|  | VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( | 
|  | (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); | 
|  |  | 
|  | // generalized eigen problem ABx = lx | 
|  | eiSymmGen.compute(symmC, symmB,ABx_lx); | 
|  | VERIFY_IS_EQUAL(eiSymmGen.info(), Success); | 
|  | VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox( | 
|  | (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); | 
|  |  | 
|  |  | 
|  | eiSymm.compute(symmC); | 
|  | MatrixType sqrtSymmA = eiSymm.operatorSqrt(); | 
|  | VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA); | 
|  | VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt()); | 
|  |  | 
|  | MatrixType id = MatrixType::Identity(rows, cols); | 
|  | VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1)); | 
|  |  | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized; | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.info()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); | 
|  |  | 
|  | eiSymmUninitialized.compute(symmA, false); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt()); | 
|  | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt()); | 
|  |  | 
|  | // test Tridiagonalization's methods | 
|  | Tridiagonalization<MatrixType> tridiag(symmC); | 
|  | VERIFY_IS_APPROX(tridiag.diagonal(), tridiag.matrixT().diagonal()); | 
|  | VERIFY_IS_APPROX(tridiag.subDiagonal(), tridiag.matrixT().template diagonal<-1>()); | 
|  | Matrix<RealScalar,Dynamic,Dynamic> T = tridiag.matrixT(); | 
|  | if(rows>1 && cols>1) { | 
|  | // FIXME check that upper and lower part are 0: | 
|  | //VERIFY(T.topRightCorner(rows-2, cols-2).template triangularView<Upper>().isZero()); | 
|  | } | 
|  | VERIFY_IS_APPROX(tridiag.diagonal(), T.diagonal()); | 
|  | VERIFY_IS_APPROX(tridiag.subDiagonal(), T.template diagonal<1>()); | 
|  | VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint()); | 
|  | VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); | 
|  |  | 
|  | // Test computation of eigenvalues from tridiagonal matrix | 
|  | if(rows > 1) | 
|  | { | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymmTridiag; | 
|  | eiSymmTridiag.computeFromTridiagonal(tridiag.matrixT().diagonal(), tridiag.matrixT().diagonal(-1), ComputeEigenvectors); | 
|  | VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmTridiag.eigenvalues()); | 
|  | VERIFY_IS_APPROX(tridiag.matrixT(), eiSymmTridiag.eigenvectors().real() * eiSymmTridiag.eigenvalues().asDiagonal() * eiSymmTridiag.eigenvectors().real().transpose()); | 
|  | } | 
|  |  | 
|  | if (rows > 1 && rows < 20) | 
|  | { | 
|  | // Test matrix with NaN | 
|  | symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | 
|  | SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC); | 
|  | VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence); | 
|  | } | 
|  |  | 
|  | // regression test for bug 1098 | 
|  | { | 
|  | SelfAdjointEigenSolver<MatrixType> eig(a.adjoint() * a); | 
|  | eig.compute(a.adjoint() * a); | 
|  | } | 
|  |  | 
|  | // regression test for bug 478 | 
|  | { | 
|  | a.setZero(); | 
|  | SelfAdjointEigenSolver<MatrixType> ei3(a); | 
|  | VERIFY_IS_EQUAL(ei3.info(), Success); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); | 
|  | VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug_854() | 
|  | { | 
|  | Matrix3d m; | 
|  | m << 850.961, 51.966, 0, | 
|  | 51.966, 254.841, 0, | 
|  | 0,       0, 0; | 
|  | selfadjointeigensolver_essential_check(m); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug_1014() | 
|  | { | 
|  | Matrix3d m; | 
|  | m <<        0.11111111111111114658, 0, 0, | 
|  | 0,     0.11111111111111109107, 0, | 
|  | 0, 0,  0.11111111111111107719; | 
|  | selfadjointeigensolver_essential_check(m); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug_1225() | 
|  | { | 
|  | Matrix3d m1, m2; | 
|  | m1.setRandom(); | 
|  | m1 = m1*m1.transpose(); | 
|  | m2 = m1.triangularView<Upper>(); | 
|  | SelfAdjointEigenSolver<Matrix3d> eig1(m1); | 
|  | SelfAdjointEigenSolver<Matrix3d> eig2(m2.selfadjointView<Upper>()); | 
|  | VERIFY_IS_APPROX(eig1.eigenvalues(), eig2.eigenvalues()); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug_1204() | 
|  | { | 
|  | SparseMatrix<double> A(2,2); | 
|  | A.setIdentity(); | 
|  | SelfAdjointEigenSolver<Eigen::SparseMatrix<double> > eig(A); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(eigensolver_selfadjoint) | 
|  | { | 
|  | int s = 0; | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  |  | 
|  | // trivial test for 1x1 matrices: | 
|  | CALL_SUBTEST_1( selfadjointeigensolver(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_1( selfadjointeigensolver(Matrix<double, 1, 1>())); | 
|  | CALL_SUBTEST_1( selfadjointeigensolver(Matrix<std::complex<double>, 1, 1>())); | 
|  |  | 
|  | // very important to test 3x3 and 2x2 matrices since we provide special paths for them | 
|  | CALL_SUBTEST_12( selfadjointeigensolver(Matrix2f()) ); | 
|  | CALL_SUBTEST_12( selfadjointeigensolver(Matrix2d()) ); | 
|  | CALL_SUBTEST_12( selfadjointeigensolver(Matrix2cd()) ); | 
|  | CALL_SUBTEST_13( selfadjointeigensolver(Matrix3f()) ); | 
|  | CALL_SUBTEST_13( selfadjointeigensolver(Matrix3d()) ); | 
|  | CALL_SUBTEST_13( selfadjointeigensolver(Matrix3cd()) ); | 
|  | CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); | 
|  | CALL_SUBTEST_2( selfadjointeigensolver(Matrix4cd()) ); | 
|  |  | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | 
|  | CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) ); | 
|  | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) ); | 
|  | CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) ); | 
|  | CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) ); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | // some trivial but implementation-wise tricky cases | 
|  | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) ); | 
|  | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) ); | 
|  | CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(1,1)) ); | 
|  | CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(2,2)) ); | 
|  | CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) ); | 
|  | CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) ); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_13( bug_854<0>() ); | 
|  | CALL_SUBTEST_13( bug_1014<0>() ); | 
|  | CALL_SUBTEST_13( bug_1204<0>() ); | 
|  | CALL_SUBTEST_13( bug_1225<0>() ); | 
|  |  | 
|  | // Test problem size constructors | 
|  | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | 
|  | CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s)); | 
|  | CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s)); | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } | 
|  |  |