|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2021 The Eigen Team. | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // The following is an example GPU test. | 
|  |  | 
|  | #include "main.h"  // Include the main test utilities. | 
|  |  | 
|  | // Define a kernel functor. | 
|  | // | 
|  | // The kernel must be a POD type and implement operator(). | 
|  | struct AddKernel { | 
|  | // Parameters must be POD or serializable Eigen types (e.g. Matrix, | 
|  | // Array). The return value must be a POD or serializable value type. | 
|  | template<typename Type1, typename Type2, typename Type3> | 
|  | EIGEN_DEVICE_FUNC | 
|  | Type3 operator()(const Type1& A, const Type2& B, Type3& C) const { | 
|  | C = A + B;       // Populate output parameter. | 
|  | Type3 D = A + B; // Populate return value. | 
|  | return D; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Define a sub-test that uses the kernel. | 
|  | template <typename T> | 
|  | void test_add(const T& type) { | 
|  | const Index rows = type.rows(); | 
|  | const Index cols = type.cols(); | 
|  |  | 
|  | // Create random inputs. | 
|  | const T A = T::Random(rows, cols); | 
|  | const T B = T::Random(rows, cols); | 
|  | T C; // Output parameter. | 
|  |  | 
|  | // Create kernel. | 
|  | AddKernel add_kernel; | 
|  |  | 
|  | // Run add_kernel(A, B, C) via run(...). | 
|  | // This will run on the GPU if using a GPU compiler, or CPU otherwise, | 
|  | // facilitating generic tests that can run on either. | 
|  | T D = run(add_kernel, A, B, C); | 
|  |  | 
|  | // Check that both output parameter and return value are correctly populated. | 
|  | const T expected = A + B; | 
|  | VERIFY_IS_CWISE_EQUAL(C, expected); | 
|  | VERIFY_IS_CWISE_EQUAL(D, expected); | 
|  |  | 
|  | // In a GPU-only test, we can verify that the CPU and GPU produce the | 
|  | // same results. | 
|  | T C_cpu, C_gpu; | 
|  | T D_cpu = run_on_cpu(add_kernel, A, B, C_cpu); // Runs on CPU. | 
|  | T D_gpu = run_on_gpu(add_kernel, A, B, C_gpu); // Runs on GPU. | 
|  | VERIFY_IS_CWISE_EQUAL(C_cpu, C_gpu); | 
|  | VERIFY_IS_CWISE_EQUAL(D_cpu, D_gpu); | 
|  | }; | 
|  |  | 
|  | struct MultiplyKernel { | 
|  | template<typename Type1, typename Type2, typename Type3> | 
|  | EIGEN_DEVICE_FUNC | 
|  | Type3 operator()(const Type1& A, const Type2& B, Type3& C) const { | 
|  | C = A * B; | 
|  | return A * B; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T1, typename T2, typename T3> | 
|  | void test_multiply(const T1& type1, const T2& type2, const T3& type3) { | 
|  |  | 
|  | const T1 A = T1::Random(type1.rows(), type1.cols()); | 
|  | const T2 B = T2::Random(type2.rows(), type2.cols()); | 
|  | T3 C; | 
|  |  | 
|  | MultiplyKernel multiply_kernel; | 
|  |  | 
|  | // The run(...) family of functions uses a memory buffer to transfer data back | 
|  | // and forth to and from the device.  The size of this buffer is estimated | 
|  | // from the size of all input parameters.  If the estimated buffer size is | 
|  | // not sufficient for transferring outputs from device-to-host, then an | 
|  | // explicit buffer size needs to be specified. | 
|  |  | 
|  | // 2 outputs of size (A * B). For each matrix output, the buffer will store | 
|  | // the number of rows, columns, and the data. | 
|  | size_t buffer_capacity_hint = 2 * (                     // 2 output parameters | 
|  | 2 * sizeof(typename T3::Index)                        // # Rows, # Cols | 
|  | + A.rows() * B.cols() * sizeof(typename T3::Scalar)); // Output data | 
|  |  | 
|  | T3 D = run_with_hint(buffer_capacity_hint, multiply_kernel, A, B, C); | 
|  |  | 
|  | const T3 expected = A * B; | 
|  | VERIFY_IS_CWISE_APPROX(C, expected); | 
|  | VERIFY_IS_CWISE_APPROX(D, expected); | 
|  |  | 
|  | T3 C_cpu, C_gpu; | 
|  | T3 D_cpu = run_on_cpu(multiply_kernel, A, B, C_cpu); | 
|  | T3 D_gpu = run_on_gpu_with_hint(buffer_capacity_hint, | 
|  | multiply_kernel, A, B, C_gpu); | 
|  | VERIFY_IS_CWISE_APPROX(C_cpu, C_gpu); | 
|  | VERIFY_IS_CWISE_APPROX(D_cpu, D_gpu); | 
|  | } | 
|  |  | 
|  | // Declare the test fixture. | 
|  | EIGEN_DECLARE_TEST(gpu_example) | 
|  | { | 
|  | // For the number of repeats, call the desired subtests. | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | // Call subtests with different sized/typed inputs. | 
|  | CALL_SUBTEST( test_add(Eigen::Vector3f()) ); | 
|  | CALL_SUBTEST( test_add(Eigen::Matrix3d()) ); | 
|  | #if !defined(EIGEN_USE_HIP) // FIXME | 
|  | CALL_SUBTEST( test_add(Eigen::MatrixX<int>(10, 10)) ); | 
|  | #endif | 
|  |  | 
|  | CALL_SUBTEST( test_add(Eigen::Array44f()) ); | 
|  | #if !defined(EIGEN_USE_HIP) | 
|  | CALL_SUBTEST( test_add(Eigen::ArrayXd(20)) ); | 
|  | CALL_SUBTEST( test_add(Eigen::ArrayXXi(13, 17)) ); | 
|  | #endif | 
|  |  | 
|  | CALL_SUBTEST( test_multiply(Eigen::Matrix3d(), | 
|  | Eigen::Matrix3d(), | 
|  | Eigen::Matrix3d()) ); | 
|  | #if !defined(EIGEN_USE_HIP) | 
|  | CALL_SUBTEST( test_multiply(Eigen::MatrixX<int>(10, 10), | 
|  | Eigen::MatrixX<int>(10, 10), | 
|  | Eigen::MatrixX<int>()) ); | 
|  | CALL_SUBTEST( test_multiply(Eigen::MatrixXf(12, 1), | 
|  | Eigen::MatrixXf(1, 32), | 
|  | Eigen::MatrixXf()) ); | 
|  | #endif | 
|  | } | 
|  | } |