| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 |  | 
 | /* NOTE The functions of this file have been adapted from the GMM++ library */ | 
 |  | 
 | //======================================================================== | 
 | // | 
 | // Copyright (C) 2002-2007 Yves Renard | 
 | // | 
 | // This file is a part of GETFEM++ | 
 | // | 
 | // Getfem++ is free software; you can redistribute it and/or modify | 
 | // it under the terms of the GNU Lesser General Public License as | 
 | // published by the Free Software Foundation; version 2.1 of the License. | 
 | // | 
 | // This program is distributed in the hope that it will be useful, | 
 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | // GNU Lesser General Public License for more details. | 
 | // You should have received a copy of the GNU Lesser General Public | 
 | // License along with this program; if not, write to the Free Software | 
 | // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301, | 
 | // USA. | 
 | // | 
 | //======================================================================== | 
 |  | 
 | #include "../../../../Eigen/src/Core/util/NonMPL2.h" | 
 |  | 
 | #ifndef EIGEN_CONSTRAINEDCG_H | 
 | #define EIGEN_CONSTRAINEDCG_H | 
 |  | 
 | #include "../../../../Eigen/Core" | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \ingroup IterativeLinearSolvers_Module | 
 |   * Compute the pseudo inverse of the non-square matrix C such that | 
 |   * \f$ CINV = (C * C^T)^{-1} * C \f$ based on a conjugate gradient method. | 
 |   * | 
 |   * This function is internally used by constrained_cg. | 
 |   */ | 
 | template <typename CMatrix, typename CINVMatrix> | 
 | void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV) | 
 | { | 
 |   // optimisable : copie de la ligne, precalcul de C * trans(C). | 
 |   typedef typename CMatrix::Scalar Scalar; | 
 |   typedef typename CMatrix::Index Index; | 
 |   // FIXME use sparse vectors ? | 
 |   typedef Matrix<Scalar,Dynamic,1> TmpVec; | 
 |  | 
 |   Index rows = C.rows(), cols = C.cols(); | 
 |  | 
 |   TmpVec d(rows), e(rows), l(cols), p(rows), q(rows), r(rows); | 
 |   Scalar rho, rho_1, alpha; | 
 |   d.setZero(); | 
 |  | 
 |   typedef Triplet<double> T; | 
 |   std::vector<T> tripletList; | 
 |      | 
 |   for (Index i = 0; i < rows; ++i) | 
 |   { | 
 |     d[i] = 1.0; | 
 |     rho = 1.0; | 
 |     e.setZero(); | 
 |     r = d; | 
 |     p = d; | 
 |  | 
 |     while (rho >= 1e-38) | 
 |     { /* conjugate gradient to compute e             */ | 
 |       /* which is the i-th row of inv(C * trans(C))  */ | 
 |       l = C.transpose() * p; | 
 |       q = C * l; | 
 |       alpha = rho / p.dot(q); | 
 |       e +=  alpha * p; | 
 |       r += -alpha * q; | 
 |       rho_1 = rho; | 
 |       rho = r.dot(r); | 
 |       p = (rho/rho_1) * p + r; | 
 |     } | 
 |  | 
 |     l = C.transpose() * e; // l is the i-th row of CINV | 
 |     // FIXME add a generic "prune/filter" expression for both dense and sparse object to sparse | 
 |     for (Index j=0; j<l.size(); ++j) | 
 |       if (l[j]<1e-15) | 
 | 	tripletList.push_back(T(i,j,l(j))); | 
 |  | 
 | 	 | 
 |     d[i] = 0.0; | 
 |   } | 
 |   CINV.setFromTriplets(tripletList.begin(), tripletList.end()); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /** \ingroup IterativeLinearSolvers_Module | 
 |   * Constrained conjugate gradient | 
 |   * | 
 |   * Computes the minimum of \f$ 1/2((Ax).x) - bx \f$ under the constraint \f$ Cx \le f \f$ | 
 |   */ | 
 | template<typename TMatrix, typename CMatrix, | 
 |          typename VectorX, typename VectorB, typename VectorF> | 
 | void constrained_cg(const TMatrix& A, const CMatrix& C, VectorX& x, | 
 |                        const VectorB& b, const VectorF& f, IterationController &iter) | 
 | { | 
 |   using std::sqrt; | 
 |   typedef typename TMatrix::Scalar Scalar; | 
 |   typedef typename TMatrix::Index Index; | 
 |   typedef Matrix<Scalar,Dynamic,1>  TmpVec; | 
 |  | 
 |   Scalar rho = 1.0, rho_1, lambda, gamma; | 
 |   Index xSize = x.size(); | 
 |   TmpVec  p(xSize), q(xSize), q2(xSize), | 
 |           r(xSize), old_z(xSize), z(xSize), | 
 |           memox(xSize); | 
 |   std::vector<bool> satured(C.rows()); | 
 |   p.setZero(); | 
 |   iter.setRhsNorm(sqrt(b.dot(b))); // gael vect_sp(PS, b, b) | 
 |   if (iter.rhsNorm() == 0.0) iter.setRhsNorm(1.0); | 
 |  | 
 |   SparseMatrix<Scalar,RowMajor> CINV(C.rows(), C.cols()); | 
 |   pseudo_inverse(C, CINV); | 
 |  | 
 |   while(true) | 
 |   { | 
 |     // computation of residual | 
 |     old_z = z; | 
 |     memox = x; | 
 |     r = b; | 
 |     r += A * -x; | 
 |     z = r; | 
 |     bool transition = false; | 
 |     for (Index i = 0; i < C.rows(); ++i) | 
 |     { | 
 |       Scalar al = C.row(i).dot(x) - f.coeff(i); | 
 |       if (al >= -1.0E-15) | 
 |       { | 
 |         if (!satured[i]) | 
 |         { | 
 |           satured[i] = true; | 
 |           transition = true; | 
 |         } | 
 |         Scalar bb = CINV.row(i).dot(z); | 
 |         if (bb > 0.0) | 
 |           // FIXME: we should allow that: z += -bb * C.row(i); | 
 |           for (typename CMatrix::InnerIterator it(C,i); it; ++it) | 
 |             z.coeffRef(it.index()) -= bb*it.value(); | 
 |       } | 
 |       else | 
 |         satured[i] = false; | 
 |     } | 
 |  | 
 |     // descent direction | 
 |     rho_1 = rho; | 
 |     rho = r.dot(z); | 
 |  | 
 |     if (iter.finished(rho)) break; | 
 |     if (transition || iter.first()) gamma = 0.0; | 
 |     else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1); | 
 |     p = z + gamma*p; | 
 |  | 
 |     ++iter; | 
 |     // one dimensional optimization | 
 |     q = A * p; | 
 |     lambda = rho / q.dot(p); | 
 |     for (Index i = 0; i < C.rows(); ++i) | 
 |     { | 
 |       if (!satured[i]) | 
 |       { | 
 |         Scalar bb = C.row(i).dot(p) - f[i]; | 
 |         if (bb > 0.0) | 
 |           lambda = (std::min)(lambda, (f.coeff(i)-C.row(i).dot(x)) / bb); | 
 |       } | 
 |     } | 
 |     x += lambda * p; | 
 |     memox -= x; | 
 |   } | 
 | } | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_CONSTRAINEDCG_H |