| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // This code initially comes from MINPACK whose original authors are: | 
 | // Copyright Jorge More - Argonne National Laboratory | 
 | // Copyright Burt Garbow - Argonne National Laboratory | 
 | // Copyright Ken Hillstrom - Argonne National Laboratory | 
 | // | 
 | // This Source Code Form is subject to the terms of the Minpack license | 
 | // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file. | 
 |  | 
 | #ifndef EIGEN_LMPAR_H | 
 | #define EIGEN_LMPAR_H | 
 |  | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |    | 
 |   template <typename QRSolver, typename VectorType> | 
 |     void lmpar2( | 
 |     const QRSolver &qr, | 
 |     const VectorType  &diag, | 
 |     const VectorType  &qtb, | 
 |     typename VectorType::Scalar m_delta, | 
 |     typename VectorType::Scalar &par, | 
 |     VectorType  &x) | 
 |  | 
 |   { | 
 |     using std::sqrt; | 
 |     using std::abs; | 
 |     typedef typename QRSolver::MatrixType MatrixType; | 
 |     typedef typename QRSolver::Scalar Scalar; | 
 | //    typedef typename QRSolver::StorageIndex StorageIndex; | 
 |  | 
 |     /* Local variables */ | 
 |     Index j; | 
 |     Scalar fp; | 
 |     Scalar parc, parl; | 
 |     Index iter; | 
 |     Scalar temp, paru; | 
 |     Scalar gnorm; | 
 |     Scalar dxnorm; | 
 |      | 
 |     // Make a copy of the triangular factor.  | 
 |     // This copy is modified during call the qrsolv | 
 |     MatrixType s; | 
 |     s = qr.matrixR(); | 
 |  | 
 |     /* Function Body */ | 
 |     const Scalar dwarf = (std::numeric_limits<Scalar>::min)(); | 
 |     const Index n = qr.matrixR().cols(); | 
 |     eigen_assert(n==diag.size()); | 
 |     eigen_assert(n==qtb.size()); | 
 |  | 
 |     VectorType  wa1, wa2; | 
 |  | 
 |     /* compute and store in x the gauss-newton direction. if the */ | 
 |     /* jacobian is rank-deficient, obtain a least squares solution. */ | 
 |  | 
 |     //    const Index rank = qr.nonzeroPivots(); // exactly double(0.) | 
 |     const Index rank = qr.rank(); // use a threshold | 
 |     wa1 = qtb; | 
 |     wa1.tail(n-rank).setZero(); | 
 |     //FIXME There is no solve in place for sparse triangularView | 
 |     wa1.head(rank) = s.topLeftCorner(rank,rank).template triangularView<Upper>().solve(qtb.head(rank)); | 
 |  | 
 |     x = qr.colsPermutation()*wa1; | 
 |  | 
 |     /* initialize the iteration counter. */ | 
 |     /* evaluate the function at the origin, and test */ | 
 |     /* for acceptance of the gauss-newton direction. */ | 
 |     iter = 0; | 
 |     wa2 = diag.cwiseProduct(x); | 
 |     dxnorm = wa2.blueNorm(); | 
 |     fp = dxnorm - m_delta; | 
 |     if (fp <= Scalar(0.1) * m_delta) { | 
 |       par = 0; | 
 |       return; | 
 |     } | 
 |  | 
 |     /* if the jacobian is not rank deficient, the newton */ | 
 |     /* step provides a lower bound, parl, for the zero of */ | 
 |     /* the function. otherwise set this bound to zero. */ | 
 |     parl = 0.; | 
 |     if (rank==n) { | 
 |       wa1 = qr.colsPermutation().inverse() *  diag.cwiseProduct(wa2)/dxnorm; | 
 |       s.topLeftCorner(n,n).transpose().template triangularView<Lower>().solveInPlace(wa1); | 
 |       temp = wa1.blueNorm(); | 
 |       parl = fp / m_delta / temp / temp; | 
 |     } | 
 |  | 
 |     /* calculate an upper bound, paru, for the zero of the function. */ | 
 |     for (j = 0; j < n; ++j) | 
 |       wa1[j] = s.col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)]; | 
 |  | 
 |     gnorm = wa1.stableNorm(); | 
 |     paru = gnorm / m_delta; | 
 |     if (paru == 0.) | 
 |       paru = dwarf / (std::min)(m_delta,Scalar(0.1)); | 
 |  | 
 |     /* if the input par lies outside of the interval (parl,paru), */ | 
 |     /* set par to the closer endpoint. */ | 
 |     par = (std::max)(par,parl); | 
 |     par = (std::min)(par,paru); | 
 |     if (par == 0.) | 
 |       par = gnorm / dxnorm; | 
 |  | 
 |     /* beginning of an iteration. */ | 
 |     while (true) { | 
 |       ++iter; | 
 |  | 
 |       /* evaluate the function at the current value of par. */ | 
 |       if (par == 0.) | 
 |         par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */ | 
 |       wa1 = sqrt(par)* diag; | 
 |  | 
 |       VectorType sdiag(n); | 
 |       lmqrsolv(s, qr.colsPermutation(), wa1, qtb, x, sdiag); | 
 |  | 
 |       wa2 = diag.cwiseProduct(x); | 
 |       dxnorm = wa2.blueNorm(); | 
 |       temp = fp; | 
 |       fp = dxnorm - m_delta; | 
 |  | 
 |       /* if the function is small enough, accept the current value */ | 
 |       /* of par. also test for the exceptional cases where parl */ | 
 |       /* is zero or the number of iterations has reached 10. */ | 
 |       if (abs(fp) <= Scalar(0.1) * m_delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10) | 
 |         break; | 
 |  | 
 |       /* compute the newton correction. */ | 
 |       wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm); | 
 |       // we could almost use this here, but the diagonal is outside qr, in sdiag[] | 
 |       for (j = 0; j < n; ++j) { | 
 |         wa1[j] /= sdiag[j]; | 
 |         temp = wa1[j]; | 
 |         for (Index i = j+1; i < n; ++i) | 
 |           wa1[i] -= s.coeff(i,j) * temp; | 
 |       } | 
 |       temp = wa1.blueNorm(); | 
 |       parc = fp / m_delta / temp / temp; | 
 |  | 
 |       /* depending on the sign of the function, update parl or paru. */ | 
 |       if (fp > 0.) | 
 |         parl = (std::max)(parl,par); | 
 |       if (fp < 0.) | 
 |         paru = (std::min)(paru,par); | 
 |  | 
 |       /* compute an improved estimate for par. */ | 
 |       par = (std::max)(parl,par+parc); | 
 |     } | 
 |     if (iter == 0) | 
 |       par = 0.; | 
 |     return; | 
 |   } | 
 | } // end namespace internal | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_LMPAR_H |