|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  |  | 
|  |  | 
|  | struct InsertZeros { | 
|  | DSizes<DenseIndex, 2> dimensions(const Tensor<float, 2>& input) const { | 
|  | DSizes<DenseIndex, 2> result; | 
|  | result[0] = input.dimension(0) * 2; | 
|  | result[1] = input.dimension(1) * 2; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename Output, typename Device> | 
|  | void eval(const Tensor<float, 2>& input, Output& output, const Device& device) const | 
|  | { | 
|  | array<DenseIndex, 2> strides; | 
|  | strides[0] = 2; | 
|  | strides[1] = 2; | 
|  | output.stride(strides).device(device) = input; | 
|  |  | 
|  | Eigen::DSizes<DenseIndex, 2> offsets(1,1); | 
|  | Eigen::DSizes<DenseIndex, 2> extents(output.dimension(0)-1, output.dimension(1)-1); | 
|  | output.slice(offsets, extents).stride(strides).device(device) = input.constant(0.0f); | 
|  | } | 
|  | }; | 
|  |  | 
|  | static void test_custom_unary_op() | 
|  | { | 
|  | Tensor<float, 2> tensor(3,5); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | Tensor<float, 2> result = tensor.customOp(InsertZeros()); | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 6); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 10); | 
|  |  | 
|  | for (int i = 0; i < 6; i+=2) { | 
|  | for (int j = 0; j < 10; j+=2) { | 
|  | VERIFY_IS_EQUAL(result(i, j), tensor(i/2, j/2)); | 
|  | } | 
|  | } | 
|  | for (int i = 1; i < 6; i+=2) { | 
|  | for (int j = 1; j < 10; j+=2) { | 
|  | VERIFY_IS_EQUAL(result(i, j), 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | struct BatchMatMul { | 
|  | DSizes<DenseIndex, 3> dimensions(const Tensor<float, 3>& input1, const Tensor<float, 3>& input2) const { | 
|  | DSizes<DenseIndex, 3> result; | 
|  | result[0] = input1.dimension(0); | 
|  | result[1] = input2.dimension(1); | 
|  | result[2] = input2.dimension(2); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename Output, typename Device> | 
|  | void eval(const Tensor<float, 3>& input1, const Tensor<float, 3>& input2, | 
|  | Output& output, const Device& device) const | 
|  | { | 
|  | typedef Tensor<float, 3>::DimensionPair DimPair; | 
|  | array<DimPair, 1> dims; | 
|  | dims[0] = DimPair(1, 0); | 
|  | for (int i = 0; i < output.dimension(2); ++i) { | 
|  | output.template chip<2>(i).device(device) = input1.chip<2>(i).contract(input2.chip<2>(i), dims); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void test_custom_binary_op() | 
|  | { | 
|  | Tensor<float, 3> tensor1(2,3,5); | 
|  | tensor1.setRandom(); | 
|  | Tensor<float, 3> tensor2(3,7,5); | 
|  | tensor2.setRandom(); | 
|  |  | 
|  | Tensor<float, 3> result = tensor1.customOp(tensor2, BatchMatMul()); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | typedef Tensor<float, 3>::DimensionPair DimPair; | 
|  | array<DimPair, 1> dims; | 
|  | dims[0] = DimPair(1, 0); | 
|  | Tensor<float, 2> reference = tensor1.chip<2>(i).contract(tensor2.chip<2>(i), dims); | 
|  | TensorRef<Tensor<float, 2> > val = result.chip<2>(i); | 
|  | for (int j = 0; j < 2; ++j) { | 
|  | for (int k = 0; k < 7; ++k) { | 
|  | VERIFY_IS_APPROX(val(j, k), reference(j, k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_custom_op) | 
|  | { | 
|  | CALL_SUBTEST(test_custom_unary_op()); | 
|  | CALL_SUBTEST(test_custom_binary_op()); | 
|  | } |