|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_REAL_SCHUR_H | 
|  | #define EIGEN_REAL_SCHUR_H | 
|  |  | 
|  | #include "./HessenbergDecomposition.h" | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * | 
|  | * \class RealSchur | 
|  | * | 
|  | * \brief Performs a real Schur decomposition of a square matrix | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the | 
|  | * real Schur decomposition; this is expected to be an instantiation of the | 
|  | * Matrix class template. | 
|  | * | 
|  | * Given a real square matrix A, this class computes the real Schur | 
|  | * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and | 
|  | * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose | 
|  | * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular | 
|  | * matrix is a block-triangular matrix whose diagonal consists of 1-by-1 | 
|  | * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the | 
|  | * blocks on the diagonal of T are the same as the eigenvalues of the matrix | 
|  | * A, and thus the real Schur decomposition is used in EigenSolver to compute | 
|  | * the eigendecomposition of a matrix. | 
|  | * | 
|  | * Call the function compute() to compute the real Schur decomposition of a | 
|  | * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) | 
|  | * constructor which computes the real Schur decomposition at construction | 
|  | * time. Once the decomposition is computed, you can use the matrixU() and | 
|  | * matrixT() functions to retrieve the matrices U and T in the decomposition. | 
|  | * | 
|  | * The documentation of RealSchur(const MatrixType&, bool) contains an example | 
|  | * of the typical use of this class. | 
|  | * | 
|  | * \note The implementation is adapted from | 
|  | * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). | 
|  | * Their code is based on EISPACK. | 
|  | * | 
|  | * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver | 
|  | */ | 
|  | template <typename MatrixType_> | 
|  | class RealSchur { | 
|  | public: | 
|  | typedef MatrixType_ MatrixType; | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = internal::traits<MatrixType>::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; | 
|  | typedef Eigen::Index Index;  ///< \deprecated since Eigen 3.3 | 
|  |  | 
|  | typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; | 
|  |  | 
|  | /** \brief Default constructor. | 
|  | * | 
|  | * \param [in] size  Positive integer, size of the matrix whose Schur decomposition will be computed. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via compute().  The \p size parameter is only | 
|  | * used as a hint. It is not an error to give a wrong \p size, but it may | 
|  | * impair performance. | 
|  | * | 
|  | * \sa compute() for an example. | 
|  | */ | 
|  | explicit RealSchur(Index size = RowsAtCompileTime == Dynamic ? 1 : RowsAtCompileTime) | 
|  | : m_matT(size, size), | 
|  | m_matU(size, size), | 
|  | m_workspaceVector(size), | 
|  | m_hess(size), | 
|  | m_isInitialized(false), | 
|  | m_matUisUptodate(false), | 
|  | m_maxIters(-1) {} | 
|  |  | 
|  | /** \brief Constructor; computes real Schur decomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
|  | * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
|  | * | 
|  | * This constructor calls compute() to compute the Schur decomposition. | 
|  | * | 
|  | * Example: \include RealSchur_RealSchur_MatrixType.cpp | 
|  | * Output: \verbinclude RealSchur_RealSchur_MatrixType.out | 
|  | */ | 
|  | template <typename InputType> | 
|  | explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true) | 
|  | : m_matT(matrix.rows(), matrix.cols()), | 
|  | m_matU(matrix.rows(), matrix.cols()), | 
|  | m_workspaceVector(matrix.rows()), | 
|  | m_hess(matrix.rows()), | 
|  | m_isInitialized(false), | 
|  | m_matUisUptodate(false), | 
|  | m_maxIters(-1) { | 
|  | compute(matrix.derived(), computeU); | 
|  | } | 
|  |  | 
|  | /** \brief Returns the orthogonal matrix in the Schur decomposition. | 
|  | * | 
|  | * \returns A const reference to the matrix U. | 
|  | * | 
|  | * \pre Either the constructor RealSchur(const MatrixType&, bool) or the | 
|  | * member function compute(const MatrixType&, bool) has been called before | 
|  | * to compute the Schur decomposition of a matrix, and \p computeU was set | 
|  | * to true (the default value). | 
|  | * | 
|  | * \sa RealSchur(const MatrixType&, bool) for an example | 
|  | */ | 
|  | const MatrixType& matrixU() const { | 
|  | eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
|  | eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition."); | 
|  | return m_matU; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the quasi-triangular matrix in the Schur decomposition. | 
|  | * | 
|  | * \returns A const reference to the matrix T. | 
|  | * | 
|  | * \pre Either the constructor RealSchur(const MatrixType&, bool) or the | 
|  | * member function compute(const MatrixType&, bool) has been called before | 
|  | * to compute the Schur decomposition of a matrix. | 
|  | * | 
|  | * \sa RealSchur(const MatrixType&, bool) for an example | 
|  | */ | 
|  | const MatrixType& matrixT() const { | 
|  | eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
|  | return m_matT; | 
|  | } | 
|  |  | 
|  | /** \brief Computes Schur decomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix    Square matrix whose Schur decomposition is to be computed. | 
|  | * \param[in]  computeU  If true, both T and U are computed; if false, only T is computed. | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * The Schur decomposition is computed by first reducing the matrix to | 
|  | * Hessenberg form using the class HessenbergDecomposition. The Hessenberg | 
|  | * matrix is then reduced to triangular form by performing Francis QR | 
|  | * iterations with implicit double shift. The cost of computing the Schur | 
|  | * decomposition depends on the number of iterations; as a rough guide, it | 
|  | * may be taken to be \f$25n^3\f$ flops if \a computeU is true and | 
|  | * \f$10n^3\f$ flops if \a computeU is false. | 
|  | * | 
|  | * Example: \include RealSchur_compute.cpp | 
|  | * Output: \verbinclude RealSchur_compute.out | 
|  | * | 
|  | * \sa compute(const MatrixType&, bool, Index) | 
|  | */ | 
|  | template <typename InputType> | 
|  | RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); | 
|  |  | 
|  | /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T | 
|  | *  \param[in] matrixH Matrix in Hessenberg form H | 
|  | *  \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T | 
|  | *  \param computeU Computes the matriX U of the Schur vectors | 
|  | * \return Reference to \c *this | 
|  | * | 
|  | *  This routine assumes that the matrix is already reduced in Hessenberg form matrixH | 
|  | *  using either the class HessenbergDecomposition or another mean. | 
|  | *  It computes the upper quasi-triangular matrix T of the Schur decomposition of H | 
|  | *  When computeU is true, this routine computes the matrix U such that | 
|  | *  A = U T U^T =  (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix | 
|  | * | 
|  | * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix | 
|  | * is not available, the user should give an identity matrix (Q.setIdentity()) | 
|  | * | 
|  | * \sa compute(const MatrixType&, bool) | 
|  | */ | 
|  | template <typename HessMatrixType, typename OrthMatrixType> | 
|  | RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU); | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
|  | */ | 
|  | ComputationInfo info() const { | 
|  | eigen_assert(m_isInitialized && "RealSchur is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \brief Sets the maximum number of iterations allowed. | 
|  | * | 
|  | * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size | 
|  | * of the matrix. | 
|  | */ | 
|  | RealSchur& setMaxIterations(Index maxIters) { | 
|  | m_maxIters = maxIters; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the maximum number of iterations. */ | 
|  | Index getMaxIterations() { return m_maxIters; } | 
|  |  | 
|  | /** \brief Maximum number of iterations per row. | 
|  | * | 
|  | * If not otherwise specified, the maximum number of iterations is this number times the size of the | 
|  | * matrix. It is currently set to 40. | 
|  | */ | 
|  | static const int m_maxIterationsPerRow = 40; | 
|  |  | 
|  | private: | 
|  | MatrixType m_matT; | 
|  | MatrixType m_matU; | 
|  | ColumnVectorType m_workspaceVector; | 
|  | HessenbergDecomposition<MatrixType> m_hess; | 
|  | ComputationInfo m_info; | 
|  | bool m_isInitialized; | 
|  | bool m_matUisUptodate; | 
|  | Index m_maxIters; | 
|  |  | 
|  | typedef Matrix<Scalar, 3, 1> Vector3s; | 
|  |  | 
|  | Scalar computeNormOfT(); | 
|  | Index findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero); | 
|  | void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift); | 
|  | void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo); | 
|  | void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector); | 
|  | void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, | 
|  | Scalar* workspace); | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | template <typename InputType> | 
|  | RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) { | 
|  | const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)(); | 
|  |  | 
|  | eigen_assert(matrix.cols() == matrix.rows()); | 
|  | Index maxIters = m_maxIters; | 
|  | if (maxIters == -1) maxIters = m_maxIterationsPerRow * matrix.rows(); | 
|  |  | 
|  | Scalar scale = matrix.derived().cwiseAbs().maxCoeff(); | 
|  | if (scale < considerAsZero) { | 
|  | m_matT.setZero(matrix.rows(), matrix.cols()); | 
|  | if (computeU) m_matU.setIdentity(matrix.rows(), matrix.cols()); | 
|  | m_info = Success; | 
|  | m_isInitialized = true; | 
|  | m_matUisUptodate = computeU; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Step 1. Reduce to Hessenberg form | 
|  | m_hess.compute(matrix.derived() / scale); | 
|  |  | 
|  | // Step 2. Reduce to real Schur form | 
|  | // Note: we copy m_hess.matrixQ() into m_matU here and not in computeFromHessenberg | 
|  | //       to be able to pass our working-space buffer for the Householder to Dense evaluation. | 
|  | m_workspaceVector.resize(matrix.cols()); | 
|  | if (computeU) m_hess.matrixQ().evalTo(m_matU, m_workspaceVector); | 
|  | computeFromHessenberg(m_hess.matrixH(), m_matU, computeU); | 
|  |  | 
|  | m_matT *= scale; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  | template <typename MatrixType> | 
|  | template <typename HessMatrixType, typename OrthMatrixType> | 
|  | RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, | 
|  | const OrthMatrixType& matrixQ, bool computeU) { | 
|  | using std::abs; | 
|  |  | 
|  | m_matT = matrixH; | 
|  | m_workspaceVector.resize(m_matT.cols()); | 
|  | if (computeU && !internal::is_same_dense(m_matU, matrixQ)) m_matU = matrixQ; | 
|  |  | 
|  | Index maxIters = m_maxIters; | 
|  | if (maxIters == -1) maxIters = m_maxIterationsPerRow * matrixH.rows(); | 
|  | Scalar* workspace = &m_workspaceVector.coeffRef(0); | 
|  |  | 
|  | // The matrix m_matT is divided in three parts. | 
|  | // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. | 
|  | // Rows il,...,iu is the part we are working on (the active window). | 
|  | // Rows iu+1,...,end are already brought in triangular form. | 
|  | Index iu = m_matT.cols() - 1; | 
|  | Index iter = 0;       // iteration count for current eigenvalue | 
|  | Index totalIter = 0;  // iteration count for whole matrix | 
|  | Scalar exshift(0);    // sum of exceptional shifts | 
|  | Scalar norm = computeNormOfT(); | 
|  | // sub-diagonal entries smaller than considerAsZero will be treated as zero. | 
|  | // We use eps^2 to enable more precision in small eigenvalues. | 
|  | Scalar considerAsZero = | 
|  | numext::maxi<Scalar>(norm * numext::abs2(NumTraits<Scalar>::epsilon()), (std::numeric_limits<Scalar>::min)()); | 
|  |  | 
|  | if (!numext::is_exactly_zero(norm)) { | 
|  | while (iu >= 0) { | 
|  | Index il = findSmallSubdiagEntry(iu, considerAsZero); | 
|  |  | 
|  | // Check for convergence | 
|  | if (il == iu)  // One root found | 
|  | { | 
|  | m_matT.coeffRef(iu, iu) = m_matT.coeff(iu, iu) + exshift; | 
|  | if (iu > 0) m_matT.coeffRef(iu, iu - 1) = Scalar(0); | 
|  | iu--; | 
|  | iter = 0; | 
|  | } else if (il == iu - 1)  // Two roots found | 
|  | { | 
|  | splitOffTwoRows(iu, computeU, exshift); | 
|  | iu -= 2; | 
|  | iter = 0; | 
|  | } else  // No convergence yet | 
|  | { | 
|  | // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 | 
|  | // -Wall -DNDEBUG ) | 
|  | Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo; | 
|  | computeShift(iu, iter, exshift, shiftInfo); | 
|  | iter = iter + 1; | 
|  | totalIter = totalIter + 1; | 
|  | if (totalIter > maxIters) break; | 
|  | Index im; | 
|  | initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector); | 
|  | performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (totalIter <= maxIters) | 
|  | m_info = Success; | 
|  | else | 
|  | m_info = NoConvergence; | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_matUisUptodate = computeU; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \internal Computes and returns vector L1 norm of T */ | 
|  | template <typename MatrixType> | 
|  | inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT() { | 
|  | const Index size = m_matT.cols(); | 
|  | // FIXME to be efficient the following would requires a triangular reduxion code | 
|  | // Scalar norm = m_matT.upper().cwiseAbs().sum() | 
|  | //               + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum(); | 
|  | Scalar norm(0); | 
|  | for (Index j = 0; j < size; ++j) norm += m_matT.col(j).segment(0, (std::min)(size, j + 2)).cwiseAbs().sum(); | 
|  | return norm; | 
|  | } | 
|  |  | 
|  | /** \internal Look for single small sub-diagonal element and returns its index */ | 
|  | template <typename MatrixType> | 
|  | inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu, const Scalar& considerAsZero) { | 
|  | using std::abs; | 
|  | Index res = iu; | 
|  | while (res > 0) { | 
|  | Scalar s = abs(m_matT.coeff(res - 1, res - 1)) + abs(m_matT.coeff(res, res)); | 
|  |  | 
|  | s = numext::maxi<Scalar>(s * NumTraits<Scalar>::epsilon(), considerAsZero); | 
|  |  | 
|  | if (abs(m_matT.coeff(res, res - 1)) <= s) break; | 
|  | res--; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \internal Update T given that rows iu-1 and iu decouple from the rest. */ | 
|  | template <typename MatrixType> | 
|  | inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift) { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | const Index size = m_matT.cols(); | 
|  |  | 
|  | // The eigenvalues of the 2x2 matrix [a b; c d] are | 
|  | // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc | 
|  | Scalar p = Scalar(0.5) * (m_matT.coeff(iu - 1, iu - 1) - m_matT.coeff(iu, iu)); | 
|  | Scalar q = p * p + m_matT.coeff(iu, iu - 1) * m_matT.coeff(iu - 1, iu);  // q = tr^2 / 4 - det = discr/4 | 
|  | m_matT.coeffRef(iu, iu) += exshift; | 
|  | m_matT.coeffRef(iu - 1, iu - 1) += exshift; | 
|  |  | 
|  | if (q >= Scalar(0))  // Two real eigenvalues | 
|  | { | 
|  | Scalar z = sqrt(abs(q)); | 
|  | JacobiRotation<Scalar> rot; | 
|  | if (p >= Scalar(0)) | 
|  | rot.makeGivens(p + z, m_matT.coeff(iu, iu - 1)); | 
|  | else | 
|  | rot.makeGivens(p - z, m_matT.coeff(iu, iu - 1)); | 
|  |  | 
|  | m_matT.rightCols(size - iu + 1).applyOnTheLeft(iu - 1, iu, rot.adjoint()); | 
|  | m_matT.topRows(iu + 1).applyOnTheRight(iu - 1, iu, rot); | 
|  | m_matT.coeffRef(iu, iu - 1) = Scalar(0); | 
|  | if (computeU) m_matU.applyOnTheRight(iu - 1, iu, rot); | 
|  | } | 
|  |  | 
|  | if (iu > 1) m_matT.coeffRef(iu - 1, iu - 2) = Scalar(0); | 
|  | } | 
|  |  | 
|  | /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */ | 
|  | template <typename MatrixType> | 
|  | inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo) { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | shiftInfo.coeffRef(0) = m_matT.coeff(iu, iu); | 
|  | shiftInfo.coeffRef(1) = m_matT.coeff(iu - 1, iu - 1); | 
|  | shiftInfo.coeffRef(2) = m_matT.coeff(iu, iu - 1) * m_matT.coeff(iu - 1, iu); | 
|  |  | 
|  | // Alternate exceptional shifting strategy every 16 iterations. | 
|  | if (iter % 16 == 0) { | 
|  | // Wilkinson's original ad hoc shift | 
|  | if (iter % 32 != 0) { | 
|  | exshift += shiftInfo.coeff(0); | 
|  | for (Index i = 0; i <= iu; ++i) m_matT.coeffRef(i, i) -= shiftInfo.coeff(0); | 
|  | Scalar s = abs(m_matT.coeff(iu, iu - 1)) + abs(m_matT.coeff(iu - 1, iu - 2)); | 
|  | shiftInfo.coeffRef(0) = Scalar(0.75) * s; | 
|  | shiftInfo.coeffRef(1) = Scalar(0.75) * s; | 
|  | shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s; | 
|  | } else { | 
|  | // MATLAB's new ad hoc shift | 
|  | Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); | 
|  | s = s * s + shiftInfo.coeff(2); | 
|  | if (s > Scalar(0)) { | 
|  | s = sqrt(s); | 
|  | if (shiftInfo.coeff(1) < shiftInfo.coeff(0)) s = -s; | 
|  | s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0); | 
|  | s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s; | 
|  | exshift += s; | 
|  | for (Index i = 0; i <= iu; ++i) m_matT.coeffRef(i, i) -= s; | 
|  | shiftInfo.setConstant(Scalar(0.964)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */ | 
|  | template <typename MatrixType> | 
|  | inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, | 
|  | Vector3s& firstHouseholderVector) { | 
|  | using std::abs; | 
|  | Vector3s& v = firstHouseholderVector;  // alias to save typing | 
|  |  | 
|  | for (im = iu - 2; im >= il; --im) { | 
|  | const Scalar Tmm = m_matT.coeff(im, im); | 
|  | const Scalar r = shiftInfo.coeff(0) - Tmm; | 
|  | const Scalar s = shiftInfo.coeff(1) - Tmm; | 
|  | v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im + 1, im) + m_matT.coeff(im, im + 1); | 
|  | v.coeffRef(1) = m_matT.coeff(im + 1, im + 1) - Tmm - r - s; | 
|  | v.coeffRef(2) = m_matT.coeff(im + 2, im + 1); | 
|  | if (im == il) { | 
|  | break; | 
|  | } | 
|  | const Scalar lhs = m_matT.coeff(im, im - 1) * (abs(v.coeff(1)) + abs(v.coeff(2))); | 
|  | const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im - 1, im - 1)) + abs(Tmm) + abs(m_matT.coeff(im + 1, im + 1))); | 
|  | if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs) break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */ | 
|  | template <typename MatrixType> | 
|  | inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, | 
|  | const Vector3s& firstHouseholderVector, Scalar* workspace) { | 
|  | eigen_assert(im >= il); | 
|  | eigen_assert(im <= iu - 2); | 
|  |  | 
|  | const Index size = m_matT.cols(); | 
|  |  | 
|  | for (Index k = im; k <= iu - 2; ++k) { | 
|  | bool firstIteration = (k == im); | 
|  |  | 
|  | Vector3s v; | 
|  | if (firstIteration) | 
|  | v = firstHouseholderVector; | 
|  | else | 
|  | v = m_matT.template block<3, 1>(k, k - 1); | 
|  |  | 
|  | Scalar tau, beta; | 
|  | Matrix<Scalar, 2, 1> ess; | 
|  | v.makeHouseholder(ess, tau, beta); | 
|  |  | 
|  | if (!numext::is_exactly_zero(beta))  // if v is not zero | 
|  | { | 
|  | if (firstIteration && k > il) | 
|  | m_matT.coeffRef(k, k - 1) = -m_matT.coeff(k, k - 1); | 
|  | else if (!firstIteration) | 
|  | m_matT.coeffRef(k, k - 1) = beta; | 
|  |  | 
|  | // These Householder transformations form the O(n^3) part of the algorithm | 
|  | m_matT.block(k, k, 3, size - k).applyHouseholderOnTheLeft(ess, tau, workspace); | 
|  | m_matT.block(0, k, (std::min)(iu, k + 3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace); | 
|  | if (computeU) m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace); | 
|  | } | 
|  | } | 
|  |  | 
|  | Matrix<Scalar, 2, 1> v = m_matT.template block<2, 1>(iu - 1, iu - 2); | 
|  | Scalar tau, beta; | 
|  | Matrix<Scalar, 1, 1> ess; | 
|  | v.makeHouseholder(ess, tau, beta); | 
|  |  | 
|  | if (!numext::is_exactly_zero(beta))  // if v is not zero | 
|  | { | 
|  | m_matT.coeffRef(iu - 1, iu - 2) = beta; | 
|  | m_matT.block(iu - 1, iu - 1, 2, size - iu + 1).applyHouseholderOnTheLeft(ess, tau, workspace); | 
|  | m_matT.block(0, iu - 1, iu + 1, 2).applyHouseholderOnTheRight(ess, tau, workspace); | 
|  | if (computeU) m_matU.block(0, iu - 1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace); | 
|  | } | 
|  |  | 
|  | // clean up pollution due to round-off errors | 
|  | for (Index i = im + 2; i <= iu; ++i) { | 
|  | m_matT.coeffRef(i, i - 2) = Scalar(0); | 
|  | if (i > im + 2) m_matT.coeffRef(i, i - 3) = Scalar(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_REAL_SCHUR_H |