| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_HOMOGENEOUS_H | 
 | #define EIGEN_HOMOGENEOUS_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * | 
 |  * \class Homogeneous | 
 |  * | 
 |  * \brief Expression of one (or a set of) homogeneous vector(s) | 
 |  * | 
 |  * \param MatrixType the type of the object in which we are making homogeneous | 
 |  * | 
 |  * This class represents an expression of one (or a set of) homogeneous vector(s). | 
 |  * It is the return type of MatrixBase::homogeneous() and most of the time | 
 |  * this is the only way it is used. | 
 |  * | 
 |  * \sa MatrixBase::homogeneous() | 
 |  */ | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename MatrixType, int Direction> | 
 | struct traits<Homogeneous<MatrixType, Direction> > : traits<MatrixType> { | 
 |   typedef typename traits<MatrixType>::StorageKind StorageKind; | 
 |   typedef typename ref_selector<MatrixType>::type MatrixTypeNested; | 
 |   typedef std::remove_reference_t<MatrixTypeNested> MatrixTypeNested_; | 
 |   enum { | 
 |     RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ? int(MatrixType::RowsAtCompileTime) + 1 : Dynamic, | 
 |     ColsPlusOne = (MatrixType::ColsAtCompileTime != Dynamic) ? int(MatrixType::ColsAtCompileTime) + 1 : Dynamic, | 
 |     RowsAtCompileTime = Direction == Vertical ? RowsPlusOne : MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = Direction == Horizontal ? ColsPlusOne : MatrixType::ColsAtCompileTime, | 
 |     MaxRowsAtCompileTime = RowsAtCompileTime, | 
 |     MaxColsAtCompileTime = ColsAtCompileTime, | 
 |     TmpFlags = MatrixTypeNested_::Flags & HereditaryBits, | 
 |     Flags = ColsAtCompileTime == 1   ? (TmpFlags & ~RowMajorBit) | 
 |             : RowsAtCompileTime == 1 ? (TmpFlags | RowMajorBit) | 
 |                                      : TmpFlags | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename MatrixType, typename Lhs> | 
 | struct homogeneous_left_product_impl; | 
 | template <typename MatrixType, typename Rhs> | 
 | struct homogeneous_right_product_impl; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | template <typename MatrixType, int Direction_> | 
 | class Homogeneous : public MatrixBase<Homogeneous<MatrixType, Direction_> >, internal::no_assignment_operator { | 
 |  public: | 
 |   typedef MatrixType NestedExpression; | 
 |   enum { Direction = Direction_ }; | 
 |  | 
 |   typedef MatrixBase<Homogeneous> Base; | 
 |   EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous) | 
 |  | 
 |   EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix) : m_matrix(matrix) {} | 
 |  | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { | 
 |     return m_matrix.rows() + (int(Direction) == Vertical ? 1 : 0); | 
 |   } | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { | 
 |     return m_matrix.cols() + (int(Direction) == Horizontal ? 1 : 0); | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; } | 
 |  | 
 |   template <typename Rhs> | 
 |   EIGEN_DEVICE_FUNC inline const Product<Homogeneous, Rhs> operator*(const MatrixBase<Rhs>& rhs) const { | 
 |     eigen_assert(int(Direction) == Horizontal); | 
 |     return Product<Homogeneous, Rhs>(*this, rhs.derived()); | 
 |   } | 
 |  | 
 |   template <typename Lhs> | 
 |   friend EIGEN_DEVICE_FUNC inline const Product<Lhs, Homogeneous> operator*(const MatrixBase<Lhs>& lhs, | 
 |                                                                             const Homogeneous& rhs) { | 
 |     eigen_assert(int(Direction) == Vertical); | 
 |     return Product<Lhs, Homogeneous>(lhs.derived(), rhs); | 
 |   } | 
 |  | 
 |   template <typename Scalar, int Dim, int Mode, int Options> | 
 |   friend EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar, Dim, Mode, Options>, Homogeneous> operator*( | 
 |       const Transform<Scalar, Dim, Mode, Options>& lhs, const Homogeneous& rhs) { | 
 |     eigen_assert(int(Direction) == Vertical); | 
 |     return Product<Transform<Scalar, Dim, Mode, Options>, Homogeneous>(lhs, rhs); | 
 |   } | 
 |  | 
 |   template <typename Func> | 
 |   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar, Scalar)>::type redux( | 
 |       const Func& func) const { | 
 |     return func(m_matrix.redux(func), Scalar(1)); | 
 |   } | 
 |  | 
 |  protected: | 
 |   typename MatrixType::Nested m_matrix; | 
 | }; | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * | 
 |  * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as | 
 |  * the last coefficient. | 
 |  * | 
 |  * This can be used to convert affine coordinates to homogeneous coordinates. | 
 |  * | 
 |  * \only_for_vectors | 
 |  * | 
 |  * Example: \include MatrixBase_homogeneous.cpp | 
 |  * Output: \verbinclude MatrixBase_homogeneous.out | 
 |  * | 
 |  * \sa VectorwiseOp::homogeneous(), class Homogeneous | 
 |  */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType MatrixBase<Derived>::homogeneous() const { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); | 
 |   return HomogeneousReturnType(derived()); | 
 | } | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * | 
 |  * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of | 
 |  * the matrix. | 
 |  * | 
 |  * This can be used to convert affine coordinates to homogeneous coordinates. | 
 |  * | 
 |  * Example: \include VectorwiseOp_homogeneous.cpp | 
 |  * Output: \verbinclude VectorwiseOp_homogeneous.out | 
 |  * | 
 |  * \sa MatrixBase::homogeneous(), class Homogeneous */ | 
 | template <typename ExpressionType, int Direction> | 
 | EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType, Direction> VectorwiseOp<ExpressionType, Direction>::homogeneous() | 
 |     const { | 
 |   return HomogeneousReturnType(_expression()); | 
 | } | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |   * | 
 |   * \brief homogeneous normalization | 
 |   * | 
 |   * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient. | 
 |   * | 
 |   * This can be used to convert homogeneous coordinates to affine coordinates. | 
 |   * | 
 |   * It is essentially a shortcut for: | 
 |   * \code | 
 |     this->head(this->size()-1)/this->coeff(this->size()-1); | 
 |     \endcode | 
 |   * | 
 |   * Example: \include MatrixBase_hnormalized.cpp | 
 |   * Output: \verbinclude MatrixBase_hnormalized.out | 
 |   * | 
 |   * \sa VectorwiseOp::hnormalized() */ | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType MatrixBase<Derived>::hnormalized() | 
 |     const { | 
 |   EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); | 
 |   return ConstStartMinusOne(derived(), 0, 0, ColsAtCompileTime == 1 ? size() - 1 : 1, | 
 |                             ColsAtCompileTime == 1 ? 1 : size() - 1) / | 
 |          coeff(size() - 1); | 
 | } | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * | 
 |  * \brief column or row-wise homogeneous normalization | 
 |  * | 
 |  * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last | 
 |  * coefficient of each column (or row). | 
 |  * | 
 |  * This can be used to convert homogeneous coordinates to affine coordinates. | 
 |  * | 
 |  * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this. | 
 |  * | 
 |  * Example: \include DirectionWise_hnormalized.cpp | 
 |  * Output: \verbinclude DirectionWise_hnormalized.out | 
 |  * | 
 |  * \sa MatrixBase::hnormalized() */ | 
 | template <typename ExpressionType, int Direction> | 
 | EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType, Direction>::HNormalizedReturnType | 
 | VectorwiseOp<ExpressionType, Direction>::hnormalized() const { | 
 |   return HNormalized_Block(_expression(), 0, 0, Direction == Vertical ? _expression().rows() - 1 : _expression().rows(), | 
 |                            Direction == Horizontal ? _expression().cols() - 1 : _expression().cols()) | 
 |       .cwiseQuotient(Replicate < HNormalized_Factors, Direction == Vertical ? HNormalized_SizeMinusOne : 1, | 
 |                      Direction == Horizontal | 
 |                          ? HNormalized_SizeMinusOne | 
 |                          : 1 > (HNormalized_Factors(_expression(), Direction == Vertical ? _expression().rows() - 1 : 0, | 
 |                                                     Direction == Horizontal ? _expression().cols() - 1 : 0, | 
 |                                                     Direction == Vertical ? 1 : _expression().rows(), | 
 |                                                     Direction == Horizontal ? 1 : _expression().cols()), | 
 |                                 Direction == Vertical ? _expression().rows() - 1 : 1, | 
 |                                 Direction == Horizontal ? _expression().cols() - 1 : 1)); | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename MatrixOrTransformType> | 
 | struct take_matrix_for_product { | 
 |   typedef MatrixOrTransformType type; | 
 |   EIGEN_DEVICE_FUNC static const type& run(const type& x) { return x; } | 
 | }; | 
 |  | 
 | template <typename Scalar, int Dim, int Mode, int Options> | 
 | struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> > { | 
 |   typedef Transform<Scalar, Dim, Mode, Options> TransformType; | 
 |   typedef std::add_const_t<typename TransformType::ConstAffinePart> type; | 
 |   EIGEN_DEVICE_FUNC static type run(const TransformType& x) { return x.affine(); } | 
 | }; | 
 |  | 
 | template <typename Scalar, int Dim, int Options> | 
 | struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> > { | 
 |   typedef Transform<Scalar, Dim, Projective, Options> TransformType; | 
 |   typedef typename TransformType::MatrixType type; | 
 |   EIGEN_DEVICE_FUNC static const type& run(const TransformType& x) { return x.matrix(); } | 
 | }; | 
 |  | 
 | template <typename MatrixType, typename Lhs> | 
 | struct traits<homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs> > { | 
 |   typedef typename take_matrix_for_product<Lhs>::type LhsMatrixType; | 
 |   typedef remove_all_t<MatrixType> MatrixTypeCleaned; | 
 |   typedef remove_all_t<LhsMatrixType> LhsMatrixTypeCleaned; | 
 |   typedef typename make_proper_matrix_type< | 
 |       typename traits<MatrixTypeCleaned>::Scalar, LhsMatrixTypeCleaned::RowsAtCompileTime, | 
 |       MatrixTypeCleaned::ColsAtCompileTime, MatrixTypeCleaned::PlainObject::Options, | 
 |       LhsMatrixTypeCleaned::MaxRowsAtCompileTime, MatrixTypeCleaned::MaxColsAtCompileTime>::type ReturnType; | 
 | }; | 
 |  | 
 | template <typename MatrixType, typename Lhs> | 
 | struct homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs> | 
 |     : public ReturnByValue<homogeneous_left_product_impl<Homogeneous<MatrixType, Vertical>, Lhs> > { | 
 |   typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType; | 
 |   typedef remove_all_t<LhsMatrixType> LhsMatrixTypeCleaned; | 
 |   typedef remove_all_t<typename LhsMatrixTypeCleaned::Nested> LhsMatrixTypeNested; | 
 |   EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs) | 
 |       : m_lhs(take_matrix_for_product<Lhs>::run(lhs)), m_rhs(rhs) {} | 
 |  | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } | 
 |  | 
 |   template <typename Dest> | 
 |   EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const { | 
 |     // FIXME investigate how to allow lazy evaluation of this product when possible | 
 |     dst = Block < const LhsMatrixTypeNested, LhsMatrixTypeNested::RowsAtCompileTime, | 
 |     LhsMatrixTypeNested::ColsAtCompileTime == Dynamic | 
 |         ? Dynamic | 
 |         : LhsMatrixTypeNested::ColsAtCompileTime - 1 > (m_lhs, 0, 0, m_lhs.rows(), m_lhs.cols() - 1) * m_rhs; | 
 |     dst += m_lhs.col(m_lhs.cols() - 1).rowwise().template replicate<MatrixType::ColsAtCompileTime>(m_rhs.cols()); | 
 |   } | 
 |  | 
 |   typename LhsMatrixTypeCleaned::Nested m_lhs; | 
 |   typename MatrixType::Nested m_rhs; | 
 | }; | 
 |  | 
 | template <typename MatrixType, typename Rhs> | 
 | struct traits<homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs> > { | 
 |   typedef | 
 |       typename make_proper_matrix_type<typename traits<MatrixType>::Scalar, MatrixType::RowsAtCompileTime, | 
 |                                        Rhs::ColsAtCompileTime, MatrixType::PlainObject::Options, | 
 |                                        MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime>::type ReturnType; | 
 | }; | 
 |  | 
 | template <typename MatrixType, typename Rhs> | 
 | struct homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs> | 
 |     : public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType, Horizontal>, Rhs> > { | 
 |   typedef remove_all_t<typename Rhs::Nested> RhsNested; | 
 |   EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs) {} | 
 |  | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lhs.rows(); } | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_rhs.cols(); } | 
 |  | 
 |   template <typename Dest> | 
 |   EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const { | 
 |     // FIXME investigate how to allow lazy evaluation of this product when possible | 
 |     dst = m_lhs * Block < const RhsNested, | 
 |     RhsNested::RowsAtCompileTime == Dynamic ? Dynamic : RhsNested::RowsAtCompileTime - 1, | 
 |     RhsNested::ColsAtCompileTime > (m_rhs, 0, 0, m_rhs.rows() - 1, m_rhs.cols()); | 
 |     dst += m_rhs.row(m_rhs.rows() - 1).colwise().template replicate<MatrixType::RowsAtCompileTime>(m_lhs.rows()); | 
 |   } | 
 |  | 
 |   typename MatrixType::Nested m_lhs; | 
 |   typename Rhs::Nested m_rhs; | 
 | }; | 
 |  | 
 | template <typename ArgType, int Direction> | 
 | struct evaluator_traits<Homogeneous<ArgType, Direction> > { | 
 |   typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind; | 
 |   typedef HomogeneousShape Shape; | 
 | }; | 
 |  | 
 | template <> | 
 | struct AssignmentKind<DenseShape, HomogeneousShape> { | 
 |   typedef Dense2Dense Kind; | 
 | }; | 
 |  | 
 | template <typename ArgType, int Direction> | 
 | struct unary_evaluator<Homogeneous<ArgType, Direction>, IndexBased> | 
 |     : evaluator<typename Homogeneous<ArgType, Direction>::PlainObject> { | 
 |   typedef Homogeneous<ArgType, Direction> XprType; | 
 |   typedef typename XprType::PlainObject PlainObject; | 
 |   typedef evaluator<PlainObject> Base; | 
 |  | 
 |   EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) : Base(), m_temp(op) { | 
 |     internal::construct_at<Base>(this, m_temp); | 
 |   } | 
 |  | 
 |  protected: | 
 |   PlainObject m_temp; | 
 | }; | 
 |  | 
 | // dense = homogeneous | 
 | template <typename DstXprType, typename ArgType, typename Scalar> | 
 | struct Assignment<DstXprType, Homogeneous<ArgType, Vertical>, internal::assign_op<Scalar, typename ArgType::Scalar>, | 
 |                   Dense2Dense> { | 
 |   typedef Homogeneous<ArgType, Vertical> SrcXprType; | 
 |   EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, | 
 |                                     const internal::assign_op<Scalar, typename ArgType::Scalar>&) { | 
 |     Index dstRows = src.rows(); | 
 |     Index dstCols = src.cols(); | 
 |     if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); | 
 |  | 
 |     dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression(); | 
 |     dst.row(dst.rows() - 1).setOnes(); | 
 |   } | 
 | }; | 
 |  | 
 | // dense = homogeneous | 
 | template <typename DstXprType, typename ArgType, typename Scalar> | 
 | struct Assignment<DstXprType, Homogeneous<ArgType, Horizontal>, internal::assign_op<Scalar, typename ArgType::Scalar>, | 
 |                   Dense2Dense> { | 
 |   typedef Homogeneous<ArgType, Horizontal> SrcXprType; | 
 |   EIGEN_DEVICE_FUNC static void run(DstXprType& dst, const SrcXprType& src, | 
 |                                     const internal::assign_op<Scalar, typename ArgType::Scalar>&) { | 
 |     Index dstRows = src.rows(); | 
 |     Index dstCols = src.cols(); | 
 |     if ((dst.rows() != dstRows) || (dst.cols() != dstCols)) dst.resize(dstRows, dstCols); | 
 |  | 
 |     dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression(); | 
 |     dst.col(dst.cols() - 1).setOnes(); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename LhsArg, typename Rhs, int ProductTag> | 
 | struct generic_product_impl<Homogeneous<LhsArg, Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag> { | 
 |   template <typename Dest> | 
 |   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg, Horizontal>& lhs, const Rhs& rhs) { | 
 |     homogeneous_right_product_impl<Homogeneous<LhsArg, Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Lhs, typename Rhs> | 
 | struct homogeneous_right_product_refactoring_helper { | 
 |   enum { Dim = Lhs::ColsAtCompileTime, Rows = Lhs::RowsAtCompileTime }; | 
 |   typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst; | 
 |   typedef std::remove_const_t<LinearBlockConst> LinearBlock; | 
 |   typedef typename Rhs::ConstRowXpr ConstantColumn; | 
 |   typedef Replicate<const ConstantColumn, Rows, 1> ConstantBlock; | 
 |   typedef Product<Lhs, LinearBlock, LazyProduct> LinearProduct; | 
 |   typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar, typename Rhs::Scalar>, const LinearProduct, | 
 |                         const ConstantBlock> | 
 |       Xpr; | 
 | }; | 
 |  | 
 | template <typename Lhs, typename Rhs, int ProductTag> | 
 | struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape> | 
 |     : public evaluator< | 
 |           typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression, Rhs>::Xpr> { | 
 |   typedef Product<Lhs, Rhs, LazyProduct> XprType; | 
 |   typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression, Rhs> helper; | 
 |   typedef typename helper::ConstantBlock ConstantBlock; | 
 |   typedef typename helper::Xpr RefactoredXpr; | 
 |   typedef evaluator<RefactoredXpr> Base; | 
 |  | 
 |   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) | 
 |       : Base(xpr.lhs().nestedExpression().lazyProduct( | 
 |                  xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols())) + | 
 |              ConstantBlock(xpr.rhs().row(xpr.rhs().rows() - 1), xpr.lhs().rows(), 1)) {} | 
 | }; | 
 |  | 
 | template <typename Lhs, typename RhsArg, int ProductTag> | 
 | struct generic_product_impl<Lhs, Homogeneous<RhsArg, Vertical>, DenseShape, HomogeneousShape, ProductTag> { | 
 |   template <typename Dest> | 
 |   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg, Vertical>& rhs) { | 
 |     homogeneous_left_product_impl<Homogeneous<RhsArg, Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst); | 
 |   } | 
 | }; | 
 |  | 
 | // TODO: the following specialization is to address a regression from 3.2 to 3.3 | 
 | // In the future, this path should be optimized. | 
 | template <typename Lhs, typename RhsArg, int ProductTag> | 
 | struct generic_product_impl<Lhs, Homogeneous<RhsArg, Vertical>, TriangularShape, HomogeneousShape, ProductTag> { | 
 |   template <typename Dest> | 
 |   static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg, Vertical>& rhs) { | 
 |     dst.noalias() = lhs * rhs.eval(); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename Lhs, typename Rhs> | 
 | struct homogeneous_left_product_refactoring_helper { | 
 |   enum { Dim = Rhs::RowsAtCompileTime, Cols = Rhs::ColsAtCompileTime }; | 
 |   typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst; | 
 |   typedef std::remove_const_t<LinearBlockConst> LinearBlock; | 
 |   typedef typename Lhs::ConstColXpr ConstantColumn; | 
 |   typedef Replicate<const ConstantColumn, 1, Cols> ConstantBlock; | 
 |   typedef Product<LinearBlock, Rhs, LazyProduct> LinearProduct; | 
 |   typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar, typename Rhs::Scalar>, const LinearProduct, | 
 |                         const ConstantBlock> | 
 |       Xpr; | 
 | }; | 
 |  | 
 | template <typename Lhs, typename Rhs, int ProductTag> | 
 | struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape> | 
 |     : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs, typename Rhs::NestedExpression>::Xpr> { | 
 |   typedef Product<Lhs, Rhs, LazyProduct> XprType; | 
 |   typedef homogeneous_left_product_refactoring_helper<Lhs, typename Rhs::NestedExpression> helper; | 
 |   typedef typename helper::ConstantBlock ConstantBlock; | 
 |   typedef typename helper::Xpr RefactoredXpr; | 
 |   typedef evaluator<RefactoredXpr> Base; | 
 |  | 
 |   EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr) | 
 |       : Base(xpr.lhs() | 
 |                  .template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) | 
 |                  .lazyProduct(xpr.rhs().nestedExpression()) + | 
 |              ConstantBlock(xpr.lhs().col(xpr.lhs().cols() - 1), 1, xpr.rhs().cols())) {} | 
 | }; | 
 |  | 
 | template <typename Scalar, int Dim, int Mode, int Options, typename RhsArg, int ProductTag> | 
 | struct generic_product_impl<Transform<Scalar, Dim, Mode, Options>, Homogeneous<RhsArg, Vertical>, DenseShape, | 
 |                             HomogeneousShape, ProductTag> { | 
 |   typedef Transform<Scalar, Dim, Mode, Options> TransformType; | 
 |   template <typename Dest> | 
 |   EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg, Vertical>& rhs) { | 
 |     homogeneous_left_product_impl<Homogeneous<RhsArg, Vertical>, TransformType>(lhs, rhs.nestedExpression()) | 
 |         .evalTo(dst); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename ExpressionType, int Side, bool Transposed> | 
 | struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape> | 
 |     : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape> {}; | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_HOMOGENEOUS_H |