| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_ROTATION2D_H | 
 | #define EIGEN_ROTATION2D_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | /** \geometry_module \ingroup Geometry_Module | 
 |  * | 
 |  * \class Rotation2D | 
 |  * | 
 |  * \brief Represents a rotation/orientation in a 2 dimensional space. | 
 |  * | 
 |  * \tparam Scalar_ the scalar type, i.e., the type of the coefficients | 
 |  * | 
 |  * This class is equivalent to a single scalar representing a counter clock wise rotation | 
 |  * as a single angle in radian. It provides some additional features such as the automatic | 
 |  * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar | 
 |  * interface to Quaternion in order to facilitate the writing of generic algorithms | 
 |  * dealing with rotations. | 
 |  * | 
 |  * \sa class Quaternion, class Transform | 
 |  */ | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename Scalar_> | 
 | struct traits<Rotation2D<Scalar_> > { | 
 |   typedef Scalar_ Scalar; | 
 | }; | 
 | }  // end namespace internal | 
 |  | 
 | template <typename Scalar_> | 
 | class Rotation2D : public RotationBase<Rotation2D<Scalar_>, 2> { | 
 |   typedef RotationBase<Rotation2D<Scalar_>, 2> Base; | 
 |  | 
 |  public: | 
 |   using Base::operator*; | 
 |  | 
 |   enum { Dim = 2 }; | 
 |   /** the scalar type of the coefficients */ | 
 |   typedef Scalar_ Scalar; | 
 |   typedef Matrix<Scalar, 2, 1> Vector2; | 
 |   typedef Matrix<Scalar, 2, 2> Matrix2; | 
 |  | 
 |  protected: | 
 |   Scalar m_angle; | 
 |  | 
 |  public: | 
 |   /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ | 
 |   EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {} | 
 |  | 
 |   /** Default constructor without initialization. The represented rotation is undefined. */ | 
 |   EIGEN_DEVICE_FUNC Rotation2D() {} | 
 |  | 
 |   /** Construct a 2D rotation from a 2x2 rotation matrix \a mat. | 
 |    * | 
 |    * \sa fromRotationMatrix() | 
 |    */ | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m) { | 
 |     fromRotationMatrix(m.derived()); | 
 |   } | 
 |  | 
 |   /** \returns the rotation angle */ | 
 |   EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; } | 
 |  | 
 |   /** \returns a read-write reference to the rotation angle */ | 
 |   EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; } | 
 |  | 
 |   /** \returns the rotation angle in [0,2pi] */ | 
 |   EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const { | 
 |     Scalar tmp = numext::fmod(m_angle, Scalar(2 * EIGEN_PI)); | 
 |     return tmp < Scalar(0) ? tmp + Scalar(2 * EIGEN_PI) : tmp; | 
 |   } | 
 |  | 
 |   /** \returns the rotation angle in [-pi,pi] */ | 
 |   EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const { | 
 |     Scalar tmp = numext::fmod(m_angle, Scalar(2 * EIGEN_PI)); | 
 |     if (tmp > Scalar(EIGEN_PI)) | 
 |       tmp -= Scalar(2 * EIGEN_PI); | 
 |     else if (tmp < -Scalar(EIGEN_PI)) | 
 |       tmp += Scalar(2 * EIGEN_PI); | 
 |     return tmp; | 
 |   } | 
 |  | 
 |   /** \returns the inverse rotation */ | 
 |   EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); } | 
 |  | 
 |   /** Concatenates two rotations */ | 
 |   EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const { | 
 |     return Rotation2D(m_angle + other.m_angle); | 
 |   } | 
 |  | 
 |   /** Concatenates two rotations */ | 
 |   EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) { | 
 |     m_angle += other.m_angle; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** Applies the rotation to a 2D vector */ | 
 |   EIGEN_DEVICE_FUNC Vector2 operator*(const Vector2& vec) const { return toRotationMatrix() * vec; } | 
 |  | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); | 
 |   EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const; | 
 |  | 
 |   /** Set \c *this from a 2x2 rotation matrix \a mat. | 
 |    * In other words, this function extract the rotation angle from the rotation matrix. | 
 |    * | 
 |    * This method is an alias for fromRotationMatrix() | 
 |    * | 
 |    * \sa fromRotationMatrix() | 
 |    */ | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m) { | 
 |     return fromRotationMatrix(m.derived()); | 
 |   } | 
 |  | 
 |   /** \returns the spherical interpolation between \c *this and \a other using | 
 |    * parameter \a t. It is in fact equivalent to a linear interpolation. | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const { | 
 |     Scalar dist = Rotation2D(other.m_angle - m_angle).smallestAngle(); | 
 |     return Rotation2D(m_angle + dist * t); | 
 |   } | 
 |  | 
 |   /** \returns \c *this with scalar type casted to \a NewScalarType | 
 |    * | 
 |    * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
 |    * then this function smartly returns a const reference to \c *this. | 
 |    */ | 
 |   template <typename NewScalarType> | 
 |   EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D, Rotation2D<NewScalarType> >::type cast() | 
 |       const { | 
 |     return typename internal::cast_return_type<Rotation2D, Rotation2D<NewScalarType> >::type(*this); | 
 |   } | 
 |  | 
 |   /** Copy constructor with scalar type conversion */ | 
 |   template <typename OtherScalarType> | 
 |   EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) { | 
 |     m_angle = Scalar(other.angle()); | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); } | 
 |  | 
 |   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
 |    * determined by \a prec. | 
 |    * | 
 |    * \sa MatrixBase::isApprox() */ | 
 |   EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = | 
 |                                                                NumTraits<Scalar>::dummy_precision()) const { | 
 |     return internal::isApprox(m_angle, other.m_angle, prec); | 
 |   } | 
 | }; | 
 |  | 
 | /** \ingroup Geometry_Module | 
 |  * single precision 2D rotation type */ | 
 | typedef Rotation2D<float> Rotation2Df; | 
 | /** \ingroup Geometry_Module | 
 |  * double precision 2D rotation type */ | 
 | typedef Rotation2D<double> Rotation2Dd; | 
 |  | 
 | /** Set \c *this from a 2x2 rotation matrix \a mat. | 
 |  * In other words, this function extract the rotation angle | 
 |  * from the rotation matrix. | 
 |  */ | 
 | template <typename Scalar> | 
 | template <typename Derived> | 
 | EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) { | 
 |   EIGEN_USING_STD(atan2) | 
 |   EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 2 && Derived::ColsAtCompileTime == 2, | 
 |                       YOU_MADE_A_PROGRAMMING_MISTAKE) | 
 |   m_angle = atan2(mat.coeff(1, 0), mat.coeff(0, 0)); | 
 |   return *this; | 
 | } | 
 |  | 
 | /** Constructs and \returns an equivalent 2x2 rotation matrix. | 
 |  */ | 
 | template <typename Scalar> | 
 | typename Rotation2D<Scalar>::Matrix2 EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const { | 
 |   EIGEN_USING_STD(sin) | 
 |   EIGEN_USING_STD(cos) | 
 |   Scalar sinA = sin(m_angle); | 
 |   Scalar cosA = cos(m_angle); | 
 |   return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); | 
 | } | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_ROTATION2D_H |