| |
| // g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && |
| // ./a.out g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 |
| // -DSIZE=2000 && ./a.out |
| // -DNOGMM -DNOMTL -DCSPARSE |
| // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a |
| #ifndef SIZE |
| #define SIZE 650000 |
| #endif |
| |
| #ifndef DENSITY |
| #define DENSITY 0.01 |
| #endif |
| |
| #ifndef REPEAT |
| #define REPEAT 1 |
| #endif |
| |
| #include "BenchSparseUtil.h" |
| |
| #ifndef MINDENSITY |
| #define MINDENSITY 0.0004 |
| #endif |
| |
| #ifndef NBTRIES |
| #define NBTRIES 10 |
| #endif |
| |
| #define BENCH(X) \ |
| timer.reset(); \ |
| for (int _j = 0; _j < NBTRIES; ++_j) { \ |
| timer.start(); \ |
| for (int _k = 0; _k < REPEAT; ++_k) { \ |
| X \ |
| } \ |
| timer.stop(); \ |
| } |
| |
| #ifdef CSPARSE |
| cs* cs_sorted_multiply(const cs* a, const cs* b) { |
| cs* A = cs_transpose(a, 1); |
| cs* B = cs_transpose(b, 1); |
| cs* D = cs_multiply(B, A); /* D = B'*A' */ |
| cs_spfree(A); |
| cs_spfree(B); |
| cs_dropzeros(D); /* drop zeros from D */ |
| cs* C = cs_transpose(D, 1); /* C = D', so that C is sorted */ |
| cs_spfree(D); |
| return C; |
| } |
| #endif |
| |
| int main(int argc, char* argv[]) { |
| int rows = SIZE; |
| int cols = SIZE; |
| float density = DENSITY; |
| |
| EigenSparseMatrix sm1(rows, cols); |
| DenseVector v1(cols), v2(cols); |
| v1.setRandom(); |
| |
| BenchTimer timer; |
| for (float density = DENSITY; density >= MINDENSITY; density *= 0.5) { |
| // fillMatrix(density, rows, cols, sm1); |
| fillMatrix2(7, rows, cols, sm1); |
| |
| // dense matrices |
| #ifdef DENSEMATRIX |
| { |
| std::cout << "Eigen Dense\t" << density * 100 << "%\n"; |
| DenseMatrix m1(rows, cols); |
| eiToDense(sm1, m1); |
| |
| timer.reset(); |
| timer.start(); |
| for (int k = 0; k < REPEAT; ++k) v2 = m1 * v1; |
| timer.stop(); |
| std::cout << " a * v:\t" << timer.best() << " " << double(REPEAT) / timer.best() << " * / sec " << endl; |
| |
| timer.reset(); |
| timer.start(); |
| for (int k = 0; k < REPEAT; ++k) v2 = m1.transpose() * v1; |
| timer.stop(); |
| std::cout << " a' * v:\t" << timer.best() << endl; |
| } |
| #endif |
| |
| // eigen sparse matrices |
| { |
| std::cout << "Eigen sparse\t" << sm1.nonZeros() / float(sm1.rows() * sm1.cols()) * 100 << "%\n"; |
| |
| BENCH(asm("#myc"); v2 = sm1 * v1; asm("#myd");) |
| std::cout << " a * v:\t" << timer.best() / REPEAT << " " << double(REPEAT) / timer.best(REAL_TIMER) |
| << " * / sec " << endl; |
| |
| BENCH({ |
| asm("#mya"); |
| v2 = sm1.transpose() * v1; |
| asm("#myb"); |
| }) |
| |
| std::cout << " a' * v:\t" << timer.best() / REPEAT << endl; |
| } |
| |
| // { |
| // DynamicSparseMatrix<Scalar> m1(sm1); |
| // std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n"; |
| // |
| // BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1 * v1;) |
| // std::cout << " a * v:\t" << timer.value() << endl; |
| // |
| // BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1.transpose() * v1;) |
| // std::cout << " a' * v:\t" << timer.value() << endl; |
| // } |
| |
| // GMM++ |
| #ifndef NOGMM |
| { |
| std::cout << "GMM++ sparse\t" << density * 100 << "%\n"; |
| // GmmDynSparse gmmT3(rows,cols); |
| GmmSparse m1(rows, cols); |
| eiToGmm(sm1, m1); |
| |
| std::vector<Scalar> gmmV1(cols), gmmV2(cols); |
| Map<Matrix<Scalar, Dynamic, 1> >(&gmmV1[0], cols) = v1; |
| Map<Matrix<Scalar, Dynamic, 1> >(&gmmV2[0], cols) = v2; |
| |
| BENCH(asm("#myx"); gmm::mult(m1, gmmV1, gmmV2); asm("#myy");) |
| std::cout << " a * v:\t" << timer.value() << endl; |
| |
| BENCH(gmm::mult(gmm::transposed(m1), gmmV1, gmmV2);) |
| std::cout << " a' * v:\t" << timer.value() << endl; |
| } |
| #endif |
| |
| #ifndef NOUBLAS |
| { |
| std::cout << "ublas sparse\t" << density * 100 << "%\n"; |
| UBlasSparse m1(rows, cols); |
| eiToUblas(sm1, m1); |
| |
| boost::numeric::ublas::vector<Scalar> uv1, uv2; |
| eiToUblasVec(v1, uv1); |
| eiToUblasVec(v2, uv2); |
| |
| // std::vector<Scalar> gmmV1(cols), gmmV2(cols); |
| // Map<Matrix<Scalar,Dynamic,1> >(&gmmV1[0], cols) = v1; |
| // Map<Matrix<Scalar,Dynamic,1> >(&gmmV2[0], cols) = v2; |
| |
| BENCH(uv2 = boost::numeric::ublas::prod(m1, uv1);) |
| std::cout << " a * v:\t" << timer.value() << endl; |
| |
| // BENCH( boost::ublas::prod(gmm::transposed(m1), gmmV1, gmmV2); ) |
| // std::cout << " a' * v:\t" << timer.value() << endl; |
| } |
| #endif |
| |
| // MTL4 |
| #ifndef NOMTL |
| { |
| std::cout << "MTL4\t" << density * 100 << "%\n"; |
| MtlSparse m1(rows, cols); |
| eiToMtl(sm1, m1); |
| mtl::dense_vector<Scalar> mtlV1(cols, 1.0); |
| mtl::dense_vector<Scalar> mtlV2(cols, 1.0); |
| |
| timer.reset(); |
| timer.start(); |
| for (int k = 0; k < REPEAT; ++k) mtlV2 = m1 * mtlV1; |
| timer.stop(); |
| std::cout << " a * v:\t" << timer.value() << endl; |
| |
| timer.reset(); |
| timer.start(); |
| for (int k = 0; k < REPEAT; ++k) mtlV2 = trans(m1) * mtlV1; |
| timer.stop(); |
| std::cout << " a' * v:\t" << timer.value() << endl; |
| } |
| #endif |
| |
| std::cout << "\n\n"; |
| } |
| |
| return 0; |
| } |