| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | // Silence warnings about using the deprecated non-canonical .eulerAngles(), which are still being tested. | 
 | #define EIGEN_NO_DEPRECATED_WARNING | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/Geometry> | 
 | #include <Eigen/LU> | 
 | #include <Eigen/SVD> | 
 |  | 
 | template <typename Scalar> | 
 | void verify_euler(const Matrix<Scalar, 3, 1>& ea, int i, int j, int k) { | 
 |   typedef Matrix<Scalar, 3, 3> Matrix3; | 
 |   typedef Matrix<Scalar, 3, 1> Vector3; | 
 |   typedef AngleAxis<Scalar> AngleAxisx; | 
 |   const Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * | 
 |                   AngleAxisx(ea[2], Vector3::Unit(k))); | 
 |   const Scalar kPi = Scalar(EIGEN_PI); | 
 |  | 
 |   // Test non-canonical eulerAngles | 
 |   { | 
 |     Vector3 eabis = m.eulerAngles(i, j, k); | 
 |     Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * | 
 |                  AngleAxisx(eabis[2], Vector3::Unit(k))); | 
 |     VERIFY_IS_APPROX(m, mbis); | 
 |  | 
 |     // approx_or_less_than does not work for 0 | 
 |     VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1))); | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], kPi); | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(-kPi, eabis[1]); | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], kPi); | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(-kPi, eabis[2]); | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], kPi); | 
 |   } | 
 |  | 
 |   // Test canonicalEulerAngles | 
 |   { | 
 |     Vector3 eabis = m.canonicalEulerAngles(i, j, k); | 
 |     Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * | 
 |                  AngleAxisx(eabis[2], Vector3::Unit(k))); | 
 |     VERIFY_IS_APPROX(m, mbis); | 
 |  | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(-kPi, eabis[0]); | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], kPi); | 
 |     if (i != k) { | 
 |       // Tait-Bryan sequence | 
 |       VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(kPi / 2), eabis[1]); | 
 |       VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(kPi / 2)); | 
 |     } else { | 
 |       // Proper Euler sequence | 
 |       // approx_or_less_than does not work for 0 | 
 |       VERIFY(0 < eabis[1] || test_isMuchSmallerThan(eabis[1], Scalar(1))); | 
 |       VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], kPi); | 
 |     } | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(-kPi, eabis[2]); | 
 |     VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], kPi); | 
 |   } | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | void check_all_var(const Matrix<Scalar, 3, 1>& ea) { | 
 |   auto verify_permutation = [](const Matrix<Scalar, 3, 1>& eap) { | 
 |     verify_euler(eap, 0, 1, 2); | 
 |     verify_euler(eap, 0, 1, 0); | 
 |     verify_euler(eap, 0, 2, 1); | 
 |     verify_euler(eap, 0, 2, 0); | 
 |  | 
 |     verify_euler(eap, 1, 2, 0); | 
 |     verify_euler(eap, 1, 2, 1); | 
 |     verify_euler(eap, 1, 0, 2); | 
 |     verify_euler(eap, 1, 0, 1); | 
 |  | 
 |     verify_euler(eap, 2, 0, 1); | 
 |     verify_euler(eap, 2, 0, 2); | 
 |     verify_euler(eap, 2, 1, 0); | 
 |     verify_euler(eap, 2, 1, 2); | 
 |   }; | 
 |  | 
 |   int i, j, k; | 
 |   for (i = 0; i < 3; i++) | 
 |     for (j = 0; j < 3; j++) | 
 |       for (k = 0; k < 3; k++) { | 
 |         Matrix<Scalar, 3, 1> eap(ea(i), ea(j), ea(k)); | 
 |         verify_permutation(eap); | 
 |       } | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | void eulerangles() { | 
 |   typedef Matrix<Scalar, 3, 3> Matrix3; | 
 |   typedef Matrix<Scalar, 3, 1> Vector3; | 
 |   typedef Array<Scalar, 3, 1> Array3; | 
 |   typedef Quaternion<Scalar> Quaternionx; | 
 |   typedef AngleAxis<Scalar> AngleAxisx; | 
 |  | 
 |   const Scalar kPi = Scalar(EIGEN_PI); | 
 |   const Scalar smallVal = static_cast<Scalar>(0.001); | 
 |  | 
 |   Scalar a = internal::random<Scalar>(-kPi, kPi); | 
 |   Quaternionx q1; | 
 |   q1 = AngleAxisx(a, Vector3::Random().normalized()); | 
 |   Matrix3 m; | 
 |   m = q1; | 
 |  | 
 |   Vector3 ea = m.eulerAngles(0, 1, 2); | 
 |   check_all_var(ea); | 
 |   ea = m.eulerAngles(0, 1, 0); | 
 |   check_all_var(ea); | 
 |  | 
 |   // Check with purely random Quaternion: | 
 |   q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); | 
 |   m = q1; | 
 |   ea = m.eulerAngles(0, 1, 2); | 
 |   check_all_var(ea); | 
 |   ea = m.eulerAngles(0, 1, 0); | 
 |   check_all_var(ea); | 
 |  | 
 |   // Check with random angles in range [-pi:pi]x[-pi:pi]x[-pi:pi]. | 
 |   ea = Array3::Random() * kPi; | 
 |   check_all_var(ea); | 
 |  | 
 |   auto test_with_some_zeros = [=](const Vector3& eaz) { | 
 |     check_all_var(eaz); | 
 |     Vector3 ea_glz = eaz; | 
 |     ea_glz[0] = Scalar(0); | 
 |     check_all_var(ea_glz); | 
 |     ea_glz[0] = internal::random<Scalar>(-smallVal, smallVal); | 
 |     check_all_var(ea_glz); | 
 |     ea_glz[2] = Scalar(0); | 
 |     check_all_var(ea_glz); | 
 |     ea_glz[2] = internal::random<Scalar>(-smallVal, smallVal); | 
 |     check_all_var(ea_glz); | 
 |   }; | 
 |   // Check gimbal lock configurations and a bit noisy gimbal locks | 
 |   Vector3 ea_gl = ea; | 
 |   ea_gl[1] = kPi / 2; | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_gl[1] += internal::random<Scalar>(-smallVal, smallVal); | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_gl[1] = -kPi / 2; | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_gl[1] += internal::random<Scalar>(-smallVal, smallVal); | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_gl[1] = kPi / 2; | 
 |   ea_gl[2] = ea_gl[0]; | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_gl[1] += internal::random<Scalar>(-smallVal, smallVal); | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_gl[1] = -kPi / 2; | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_gl[1] += internal::random<Scalar>(-smallVal, smallVal); | 
 |   test_with_some_zeros(ea_gl); | 
 |  | 
 |   // Similar to above, but with pi instead of pi/2 | 
 |   Vector3 ea_pi = ea; | 
 |   ea_pi[1] = kPi; | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_pi[1] += internal::random<Scalar>(-smallVal, smallVal); | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_pi[1] = -kPi; | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_pi[1] += internal::random<Scalar>(-smallVal, smallVal); | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_pi[1] = kPi; | 
 |   ea_pi[2] = ea_pi[0]; | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_pi[1] += internal::random<Scalar>(-smallVal, smallVal); | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_pi[1] = -kPi; | 
 |   test_with_some_zeros(ea_gl); | 
 |   ea_pi[1] += internal::random<Scalar>(-smallVal, smallVal); | 
 |   test_with_some_zeros(ea_gl); | 
 |  | 
 |   ea[2] = ea[0] = internal::random<Scalar>(0, kPi); | 
 |   check_all_var(ea); | 
 |  | 
 |   ea[0] = ea[1] = internal::random<Scalar>(0, kPi); | 
 |   check_all_var(ea); | 
 |  | 
 |   ea[1] = 0; | 
 |   check_all_var(ea); | 
 |  | 
 |   ea.head(2).setZero(); | 
 |   check_all_var(ea); | 
 |  | 
 |   ea.setZero(); | 
 |   check_all_var(ea); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(geo_eulerangles) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(eulerangles<float>()); | 
 |     CALL_SUBTEST_2(eulerangles<double>()); | 
 |   } | 
 | } |