| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/SVD> |
| |
| template <typename T> |
| Matrix<T, 2, 1> angleToVec(T a) { |
| return Matrix<T, 2, 1>(std::cos(a), std::sin(a)); |
| } |
| |
| // This permits to workaround a bug in clang/llvm code generation. |
| template <typename T> |
| EIGEN_DONT_INLINE void dont_over_optimize(T& x) { |
| volatile typename T::Scalar tmp = x(0); |
| x(0) = tmp; |
| } |
| |
| template <typename Scalar, int Mode, int Options> |
| void non_projective_only() { |
| /* this test covers the following files: |
| Cross.h Quaternion.h, Transform.cpp |
| */ |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| typedef Quaternion<Scalar> Quaternionx; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| typedef Transform<Scalar, 3, Mode, Options> Transform3; |
| typedef DiagonalMatrix<Scalar, 3> AlignedScaling3; |
| typedef Translation<Scalar, 3> Translation3; |
| |
| Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(); |
| |
| Transform3 t0, t1, t2; |
| |
| Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
| |
| Quaternionx q1, q2; |
| |
| q1 = AngleAxisx(a, v0.normalized()); |
| |
| t0 = Transform3::Identity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| |
| t0.linear() = q1.toRotationMatrix(); |
| |
| v0 << 50, 2, 1; |
| t0.scale(v0); |
| |
| VERIFY_IS_APPROX((t0 * Vector3(1, 0, 0)).template head<3>().norm(), v0.x()); |
| |
| t0.setIdentity(); |
| t1.setIdentity(); |
| v1 << 1, 2, 3; |
| t0.linear() = q1.toRotationMatrix(); |
| t0.pretranslate(v0); |
| t0.scale(v1); |
| t1.linear() = q1.conjugate().toRotationMatrix(); |
| t1.prescale(v1.cwiseInverse()); |
| t1.translate(-v0); |
| |
| VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); |
| |
| t1.fromPositionOrientationScale(v0, q1, v1); |
| VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); |
| VERIFY_IS_APPROX(t1 * v1, t0 * v1); |
| |
| // translation * vector |
| t0.setIdentity(); |
| t0.translate(v0); |
| VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); |
| |
| // AlignedScaling * vector |
| t0.setIdentity(); |
| t0.scale(v0); |
| VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1); |
| } |
| |
| template <typename Scalar, int Mode, int Options> |
| void transformations() { |
| /* this test covers the following files: |
| Cross.h Quaternion.h, Transform.cpp |
| */ |
| using std::abs; |
| using std::cos; |
| typedef Matrix<Scalar, 3, 3> Matrix3; |
| typedef Matrix<Scalar, 4, 4> Matrix4; |
| typedef Matrix<Scalar, 2, 1> Vector2; |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| typedef Matrix<Scalar, 4, 1> Vector4; |
| typedef Quaternion<Scalar> Quaternionx; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| typedef Transform<Scalar, 2, Mode, Options> Transform2; |
| typedef Transform<Scalar, 3, Mode, Options> Transform3; |
| typedef typename Transform3::MatrixType MatrixType; |
| typedef DiagonalMatrix<Scalar, 3> AlignedScaling3; |
| typedef Translation<Scalar, 2> Translation2; |
| typedef Translation<Scalar, 3> Translation3; |
| |
| Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(); |
| Matrix3 matrot1, m; |
| |
| Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
| Scalar s0 = internal::random<Scalar>(), s1 = internal::random<Scalar>(); |
| |
| while (v0.norm() < test_precision<Scalar>()) v0 = Vector3::Random(); |
| while (v1.norm() < test_precision<Scalar>()) v1 = Vector3::Random(); |
| |
| VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); |
| VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(EIGEN_PI), v0.unitOrthogonal()) * v0); |
| if (abs(cos(a)) > test_precision<Scalar>()) { |
| VERIFY_IS_APPROX(cos(a) * v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); |
| } |
| m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); |
| VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); |
| VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); |
| |
| Quaternionx q1, q2; |
| q1 = AngleAxisx(a, v0.normalized()); |
| q2 = AngleAxisx(a, v1.normalized()); |
| |
| // rotation matrix conversion |
| matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) * AngleAxisx(Scalar(0.2), Vector3::UnitY()) * |
| AngleAxisx(Scalar(0.3), Vector3::UnitZ()); |
| VERIFY_IS_APPROX(matrot1 * v1, AngleAxisx(Scalar(0.1), Vector3(1, 0, 0)).toRotationMatrix() * |
| (AngleAxisx(Scalar(0.2), Vector3(0, 1, 0)).toRotationMatrix() * |
| (AngleAxisx(Scalar(0.3), Vector3(0, 0, 1)).toRotationMatrix() * v1))); |
| |
| // angle-axis conversion |
| AngleAxisx aa = AngleAxisx(q1); |
| VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); |
| |
| // The following test is stable only if 2*angle != angle and v1 is not colinear with axis |
| if ((abs(aa.angle()) > test_precision<Scalar>()) && |
| (abs(aa.axis().dot(v1.normalized())) < (Scalar(1) - Scalar(4) * test_precision<Scalar>()))) { |
| VERIFY(!(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle() * 2, aa.axis())) * v1)); |
| } |
| |
| aa.fromRotationMatrix(aa.toRotationMatrix()); |
| VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); |
| // The following test is stable only if 2*angle != angle and v1 is not colinear with axis |
| if ((abs(aa.angle()) > test_precision<Scalar>()) && |
| (abs(aa.axis().dot(v1.normalized())) < (Scalar(1) - Scalar(4) * test_precision<Scalar>()))) { |
| VERIFY(!(q1 * v1).isApprox(Quaternionx(AngleAxisx(aa.angle() * 2, aa.axis())) * v1)); |
| } |
| |
| // AngleAxis |
| VERIFY_IS_APPROX(AngleAxisx(a, v1.normalized()).toRotationMatrix(), |
| Quaternionx(AngleAxisx(a, v1.normalized())).toRotationMatrix()); |
| |
| AngleAxisx aa1; |
| m = q1.toRotationMatrix(); |
| aa1 = m; |
| VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), Quaternionx(m).toRotationMatrix()); |
| |
| // Transform |
| // TODO complete the tests ! |
| a = 0; |
| while (abs(a) < Scalar(0.1)) |
| a = internal::random<Scalar>(-Scalar(0.4) * Scalar(EIGEN_PI), Scalar(0.4) * Scalar(EIGEN_PI)); |
| q1 = AngleAxisx(a, v0.normalized()); |
| Transform3 t0, t1, t2; |
| |
| // first test setIdentity() and Identity() |
| t0.setIdentity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| t0.matrix().setZero(); |
| t0 = Transform3::Identity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| |
| t0.setIdentity(); |
| t1.setIdentity(); |
| v1 << 1, 2, 3; |
| t0.linear() = q1.toRotationMatrix(); |
| t0.pretranslate(v0); |
| t0.scale(v1); |
| t1.linear() = q1.conjugate().toRotationMatrix(); |
| t1.prescale(v1.cwiseInverse()); |
| t1.translate(-v0); |
| |
| VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); |
| |
| t1.fromPositionOrientationScale(v0, q1, v1); |
| VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); |
| |
| t0.setIdentity(); |
| t0.scale(v0).rotate(q1.toRotationMatrix()); |
| t1.setIdentity(); |
| t1.scale(v0).rotate(q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); |
| t0.scale(v0).rotate(AngleAxisx(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); |
| VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); |
| |
| // More transform constructors, operator=, operator*= |
| |
| Matrix3 mat3 = Matrix3::Random(); |
| Matrix4 mat4; |
| mat4 << mat3, Vector3::Zero(), Vector4::Zero().transpose(); |
| Transform3 tmat3(mat3), tmat4(mat4); |
| if (Mode != int(AffineCompact)) tmat4.matrix()(3, 3) = Scalar(1); |
| VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); |
| |
| Scalar a3 = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
| Vector3 v3 = Vector3::Random().normalized(); |
| AngleAxisx aa3(a3, v3); |
| Transform3 t3(aa3); |
| Transform3 t4; |
| t4 = aa3; |
| VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); |
| t4.rotate(AngleAxisx(-a3, v3)); |
| VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); |
| t4 *= aa3; |
| VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); |
| |
| do { |
| v3 = Vector3::Random(); |
| dont_over_optimize(v3); |
| } while (v3.cwiseAbs().minCoeff() < NumTraits<Scalar>::epsilon()); |
| Translation3 tv3(v3); |
| Transform3 t5(tv3); |
| t4 = tv3; |
| VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); |
| t4.translate((-v3).eval()); |
| VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); |
| t4 *= tv3; |
| VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); |
| |
| AlignedScaling3 sv3(v3); |
| Transform3 t6(sv3); |
| t4 = sv3; |
| VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); |
| t4.scale(v3.cwiseInverse()); |
| VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); |
| t4 *= sv3; |
| VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); |
| |
| // matrix * transform |
| VERIFY_IS_APPROX((t3.matrix() * t4).matrix(), (t3 * t4).matrix()); |
| |
| // chained Transform product |
| VERIFY_IS_APPROX(((t3 * t4) * t5).matrix(), (t3 * (t4 * t5)).matrix()); |
| |
| // check that Transform product doesn't have aliasing problems |
| t5 = t4; |
| t5 = t5 * t5; |
| VERIFY_IS_APPROX(t5, t4 * t4); |
| |
| // 2D transformation |
| Transform2 t20, t21; |
| Vector2 v20 = Vector2::Random(); |
| Vector2 v21 = Vector2::Random(); |
| for (int k = 0; k < 2; ++k) |
| if (abs(v21[k]) < Scalar(1e-3)) v21[k] = Scalar(1e-3); |
| t21.setIdentity(); |
| t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); |
| VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20, a, v21).matrix(), t21.pretranslate(v20).scale(v21).matrix()); |
| |
| t21.setIdentity(); |
| t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); |
| VERIFY((t20.fromPositionOrientationScale(v20, a, v21) * (t21.prescale(v21.cwiseInverse()).translate(-v20))) |
| .matrix() |
| .isIdentity(test_precision<Scalar>())); |
| |
| t20.setIdentity(); |
| t20.shear(Scalar(2), Scalar(3)); |
| Transform2 t23 = t20 * t21; |
| t21.preshear(Scalar(2), Scalar(3)); |
| VERIFY_IS_APPROX(t21, t23); |
| |
| // Transform - new API |
| // 3D |
| t0.setIdentity(); |
| t0.rotate(q1).scale(v0).translate(v0); |
| // mat * aligned scaling and mat * translation |
| t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // mat * transformation and aligned scaling * translation |
| t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); |
| t0.scale(s0).translate(v0); |
| t1 = Eigen::Scaling(s0) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t0.prescale(s0); |
| t1 = Eigen::Scaling(s0) * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0 = t3; |
| t0.scale(s0); |
| t1 = t3 * Eigen::Scaling(s0, s0, s0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t0.prescale(s0); |
| t1 = Eigen::Scaling(s0, s0, s0) * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0 = t3; |
| t0.scale(s0); |
| t1 = t3 * Eigen::Scaling(s0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t0.prescale(s0); |
| t1 = Eigen::Scaling(s0) * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); |
| t0.prerotate(q1).prescale(v0).pretranslate(v0); |
| // translation * aligned scaling and transformation * mat |
| t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // scaling * mat and translation * mat |
| t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); |
| t0.scale(v0).translate(v0).rotate(q1); |
| // translation * mat and aligned scaling * transformation |
| t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // transformation * aligned scaling |
| t0.scale(v0); |
| t1 *= AlignedScaling3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); |
| t1 = t1 * v0.asDiagonal(); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // transformation * translation |
| t0.translate(v0); |
| t1 = t1 * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // translation * transformation |
| t0.pretranslate(v0); |
| t1 = Translation3(v0) * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // transform * quaternion |
| t0.rotate(q1); |
| t1 = t1 * q1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // translation * quaternion |
| t0.translate(v1).rotate(q1); |
| t1 = t1 * (Translation3(v1) * q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // aligned scaling * quaternion |
| t0.scale(v1).rotate(q1); |
| t1 = t1 * (AlignedScaling3(v1) * q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * transform |
| t0.prerotate(q1); |
| t1 = q1 * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * translation |
| t0.rotate(q1).translate(v1); |
| t1 = t1 * (q1 * Translation3(v1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * aligned scaling |
| t0.rotate(q1).scale(v1); |
| t1 = t1 * (q1 * AlignedScaling3(v1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // test transform inversion |
| t0.setIdentity(); |
| t0.translate(v0); |
| do { |
| t0.linear().setRandom(); |
| } while (t0.linear().jacobiSvd().singularValues()(2) < test_precision<Scalar>()); |
| Matrix4 t044 = Matrix4::Zero(); |
| t044(3, 3) = 1; |
| t044.block(0, 0, t0.matrix().rows(), 4) = t0.matrix(); |
| VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0, 0, t0.matrix().rows(), 4)); |
| t0.setIdentity(); |
| t0.translate(v0).rotate(q1); |
| t044 = Matrix4::Zero(); |
| t044(3, 3) = 1; |
| t044.block(0, 0, t0.matrix().rows(), 4) = t0.matrix(); |
| VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0, 0, t0.matrix().rows(), 4)); |
| |
| Matrix3 mat_rotation, mat_scaling; |
| t0.setIdentity(); |
| t0.translate(v0).rotate(q1).scale(v1); |
| t0.computeRotationScaling(&mat_rotation, &mat_scaling); |
| VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); |
| VERIFY_IS_APPROX(mat_rotation * mat_rotation.adjoint(), Matrix3::Identity()); |
| VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); |
| t0.computeScalingRotation(&mat_scaling, &mat_rotation); |
| VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); |
| VERIFY_IS_APPROX(mat_rotation * mat_rotation.adjoint(), Matrix3::Identity()); |
| VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); |
| |
| // test casting |
| Transform<float, 3, Mode> t1f = t1.template cast<float>(); |
| VERIFY_IS_APPROX(t1f.template cast<Scalar>(), t1); |
| Transform<double, 3, Mode> t1d = t1.template cast<double>(); |
| VERIFY_IS_APPROX(t1d.template cast<Scalar>(), t1); |
| |
| Translation3 tr1(v0); |
| Translation<float, 3> tr1f = tr1.template cast<float>(); |
| VERIFY_IS_APPROX(tr1f.template cast<Scalar>(), tr1); |
| Translation<double, 3> tr1d = tr1.template cast<double>(); |
| VERIFY_IS_APPROX(tr1d.template cast<Scalar>(), tr1); |
| |
| AngleAxis<float> aa1f = aa1.template cast<float>(); |
| VERIFY_IS_APPROX(aa1f.template cast<Scalar>(), aa1); |
| AngleAxis<double> aa1d = aa1.template cast<double>(); |
| VERIFY_IS_APPROX(aa1d.template cast<Scalar>(), aa1); |
| |
| Rotation2D<Scalar> r2d1(internal::random<Scalar>()); |
| Rotation2D<float> r2d1f = r2d1.template cast<float>(); |
| VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(), r2d1); |
| Rotation2D<double> r2d1d = r2d1.template cast<double>(); |
| VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(), r2d1); |
| |
| for (int k = 0; k < 100; ++k) { |
| Scalar angle = internal::random<Scalar>(-100, 100); |
| Rotation2D<Scalar> rot2(angle); |
| VERIFY(rot2.smallestPositiveAngle() >= 0); |
| VERIFY(rot2.smallestPositiveAngle() <= Scalar(2) * Scalar(EIGEN_PI)); |
| VERIFY_IS_APPROX(angleToVec(rot2.smallestPositiveAngle()), angleToVec(rot2.angle())); |
| |
| VERIFY(rot2.smallestAngle() >= -Scalar(EIGEN_PI)); |
| VERIFY(rot2.smallestAngle() <= Scalar(EIGEN_PI)); |
| VERIFY_IS_APPROX(angleToVec(rot2.smallestAngle()), angleToVec(rot2.angle())); |
| |
| Matrix<Scalar, 2, 2> rot2_as_mat(rot2); |
| Rotation2D<Scalar> rot3(rot2_as_mat); |
| VERIFY_IS_APPROX(angleToVec(rot2.smallestAngle()), angleToVec(rot3.angle())); |
| } |
| |
| s0 = internal::random<Scalar>(-100, 100); |
| s1 = internal::random<Scalar>(-100, 100); |
| Rotation2D<Scalar> R0(s0), R1(s1); |
| |
| t20 = Translation2(v20) * (R0 * Eigen::Scaling(s0)); |
| t21 = Translation2(v20) * R0 * Eigen::Scaling(s0); |
| VERIFY_IS_APPROX(t20, t21); |
| |
| t20 = Translation2(v20) * (R0 * R0.inverse() * Eigen::Scaling(s0)); |
| t21 = Translation2(v20) * Eigen::Scaling(s0); |
| VERIFY_IS_APPROX(t20, t21); |
| |
| VERIFY_IS_APPROX(s0, (R0.slerp(0, R1)).angle()); |
| VERIFY_IS_APPROX(angleToVec(R1.smallestPositiveAngle()), angleToVec((R0.slerp(1, R1)).smallestPositiveAngle())); |
| VERIFY_IS_APPROX(R0.smallestPositiveAngle(), (R0.slerp(0.5, R0)).smallestPositiveAngle()); |
| |
| if (std::cos(s0) > 0) |
| VERIFY_IS_MUCH_SMALLER_THAN((R0.slerp(0.5, R0.inverse())).smallestAngle(), Scalar(1)); |
| else |
| VERIFY_IS_APPROX(Scalar(EIGEN_PI), (R0.slerp(0.5, R0.inverse())).smallestPositiveAngle()); |
| |
| // Check path length |
| Scalar l = 0; |
| int path_steps = 100; |
| for (int k = 0; k < path_steps; ++k) { |
| Scalar a1 = R0.slerp(Scalar(k) / Scalar(path_steps), R1).angle(); |
| Scalar a2 = R0.slerp(Scalar(k + 1) / Scalar(path_steps), R1).angle(); |
| l += std::abs(a2 - a1); |
| } |
| VERIFY(l <= Scalar(EIGEN_PI) * (Scalar(1) + NumTraits<Scalar>::epsilon() * Scalar(path_steps / 2))); |
| |
| // check basic features |
| { |
| Rotation2D<Scalar> r1; // default ctor |
| r1 = Rotation2D<Scalar>(s0); // copy assignment |
| VERIFY_IS_APPROX(r1.angle(), s0); |
| Rotation2D<Scalar> r2(r1); // copy ctor |
| VERIFY_IS_APPROX(r2.angle(), s0); |
| } |
| |
| { |
| Transform3 t32(Matrix4::Random()), t33, t34; |
| t34 = t33 = t32; |
| t32.scale(v0); |
| t33 *= AlignedScaling3(v0); |
| VERIFY_IS_APPROX(t32.matrix(), t33.matrix()); |
| t33 = t34 * AlignedScaling3(v0); |
| VERIFY_IS_APPROX(t32.matrix(), t33.matrix()); |
| } |
| } |
| |
| template <typename A1, typename A2, typename P, typename Q, typename V, typename H> |
| void transform_associativity_left(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) { |
| VERIFY_IS_APPROX(q * (a1 * v), (q * a1) * v); |
| VERIFY_IS_APPROX(q * (a2 * v), (q * a2) * v); |
| VERIFY_IS_APPROX(q * (p * h).hnormalized(), ((q * p) * h).hnormalized()); |
| } |
| |
| template <typename A1, typename A2, typename P, typename Q, typename V, typename H> |
| void transform_associativity2(const A1& a1, const A2& a2, const P& p, const Q& q, const V& v, const H& h) { |
| VERIFY_IS_APPROX(a1 * (q * v), (a1 * q) * v); |
| VERIFY_IS_APPROX(a2 * (q * v), (a2 * q) * v); |
| VERIFY_IS_APPROX(p * (q * v).homogeneous(), (p * q) * v.homogeneous()); |
| |
| transform_associativity_left(a1, a2, p, q, v, h); |
| } |
| |
| template <typename Scalar, int Dim, int Options, typename RotationType> |
| void transform_associativity(const RotationType& R) { |
| typedef Matrix<Scalar, Dim, 1> VectorType; |
| typedef Matrix<Scalar, Dim + 1, 1> HVectorType; |
| typedef Matrix<Scalar, Dim, Dim> LinearType; |
| typedef Matrix<Scalar, Dim + 1, Dim + 1> MatrixType; |
| typedef Transform<Scalar, Dim, AffineCompact, Options> AffineCompactType; |
| typedef Transform<Scalar, Dim, Affine, Options> AffineType; |
| typedef Transform<Scalar, Dim, Projective, Options> ProjectiveType; |
| typedef DiagonalMatrix<Scalar, Dim> ScalingType; |
| typedef Translation<Scalar, Dim> TranslationType; |
| |
| AffineCompactType A1c; |
| A1c.matrix().setRandom(); |
| AffineCompactType A2c; |
| A2c.matrix().setRandom(); |
| AffineType A1(A1c); |
| AffineType A2(A2c); |
| ProjectiveType P1; |
| P1.matrix().setRandom(); |
| VectorType v1 = VectorType::Random(); |
| VectorType v2 = VectorType::Random(); |
| HVectorType h1 = HVectorType::Random(); |
| Scalar s1 = internal::random<Scalar>(); |
| LinearType L = LinearType::Random(); |
| MatrixType M = MatrixType::Random(); |
| |
| CALL_SUBTEST(transform_associativity2(A1c, A1, P1, A2, v2, h1)); |
| CALL_SUBTEST(transform_associativity2(A1c, A1, P1, A2c, v2, h1)); |
| CALL_SUBTEST(transform_associativity2(A1c, A1, P1, v1.asDiagonal(), v2, h1)); |
| CALL_SUBTEST(transform_associativity2(A1c, A1, P1, ScalingType(v1), v2, h1)); |
| CALL_SUBTEST(transform_associativity2(A1c, A1, P1, Scaling(v1), v2, h1)); |
| CALL_SUBTEST(transform_associativity2(A1c, A1, P1, Scaling(s1), v2, h1)); |
| CALL_SUBTEST(transform_associativity2(A1c, A1, P1, TranslationType(v1), v2, h1)); |
| CALL_SUBTEST(transform_associativity_left(A1c, A1, P1, L, v2, h1)); |
| CALL_SUBTEST(transform_associativity2(A1c, A1, P1, R, v2, h1)); |
| |
| VERIFY_IS_APPROX(A1 * (M * h1), (A1 * M) * h1); |
| VERIFY_IS_APPROX(A1c * (M * h1), (A1c * M) * h1); |
| VERIFY_IS_APPROX(P1 * (M * h1), (P1 * M) * h1); |
| |
| VERIFY_IS_APPROX(M * (A1 * h1), (M * A1) * h1); |
| VERIFY_IS_APPROX(M * (A1c * h1), (M * A1c) * h1); |
| VERIFY_IS_APPROX(M * (P1 * h1), ((M * P1) * h1)); |
| } |
| |
| template <typename Scalar> |
| void transform_alignment() { |
| typedef Transform<Scalar, 3, Projective, AutoAlign> Projective3a; |
| typedef Transform<Scalar, 3, Projective, DontAlign> Projective3u; |
| |
| EIGEN_ALIGN_MAX Scalar array1[16]; |
| EIGEN_ALIGN_MAX Scalar array2[16]; |
| EIGEN_ALIGN_MAX Scalar array3[16 + 1]; |
| Scalar* array3u = array3 + 1; |
| |
| Projective3a* p1 = ::new (reinterpret_cast<void*>(array1)) Projective3a; |
| Projective3u* p2 = ::new (reinterpret_cast<void*>(array2)) Projective3u; |
| Projective3u* p3 = ::new (reinterpret_cast<void*>(array3u)) Projective3u; |
| |
| p1->matrix().setRandom(); |
| *p2 = *p1; |
| *p3 = *p1; |
| |
| VERIFY_IS_APPROX(p1->matrix(), p2->matrix()); |
| VERIFY_IS_APPROX(p1->matrix(), p3->matrix()); |
| |
| VERIFY_IS_APPROX((*p1) * (*p1), (*p2) * (*p3)); |
| } |
| |
| template <typename Scalar, int Dim, int Options> |
| void transform_products() { |
| typedef Matrix<Scalar, Dim + 1, Dim + 1> Mat; |
| typedef Transform<Scalar, Dim, Projective, Options> Proj; |
| typedef Transform<Scalar, Dim, Affine, Options> Aff; |
| typedef Transform<Scalar, Dim, AffineCompact, Options> AffC; |
| |
| Proj p; |
| p.matrix().setRandom(); |
| Aff a; |
| a.linear().setRandom(); |
| a.translation().setRandom(); |
| AffC ac = a; |
| |
| Mat p_m(p.matrix()), a_m(a.matrix()); |
| |
| VERIFY_IS_APPROX((p * p).matrix(), p_m * p_m); |
| VERIFY_IS_APPROX((a * a).matrix(), a_m * a_m); |
| VERIFY_IS_APPROX((p * a).matrix(), p_m * a_m); |
| VERIFY_IS_APPROX((a * p).matrix(), a_m * p_m); |
| VERIFY_IS_APPROX((ac * a).matrix(), a_m * a_m); |
| VERIFY_IS_APPROX((a * ac).matrix(), a_m * a_m); |
| VERIFY_IS_APPROX((p * ac).matrix(), p_m * a_m); |
| VERIFY_IS_APPROX((ac * p).matrix(), a_m * p_m); |
| } |
| |
| template <typename Scalar, int Mode, int Options> |
| void transformations_no_scale() { |
| /* this test covers the following files: |
| Cross.h Quaternion.h, Transform.h |
| */ |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| typedef Matrix<Scalar, 4, 1> Vector4; |
| typedef Quaternion<Scalar> Quaternionx; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| typedef Transform<Scalar, 3, Mode, Options> Transform3; |
| typedef Translation<Scalar, 3> Translation3; |
| typedef Matrix<Scalar, 4, 4> Matrix4; |
| |
| Vector3 v0 = Vector3::Random(), v1 = Vector3::Random(); |
| |
| Transform3 t0, t1, t2; |
| |
| Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
| |
| Quaternionx q1, q2; |
| |
| q1 = AngleAxisx(a, v0.normalized()); |
| |
| t0 = Transform3::Identity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| |
| t0.setIdentity(); |
| t1.setIdentity(); |
| v1 = Vector3::Ones(); |
| t0.linear() = q1.toRotationMatrix(); |
| t0.pretranslate(v0); |
| t1.linear() = q1.conjugate().toRotationMatrix(); |
| t1.translate(-v0); |
| |
| VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); |
| |
| t1.fromPositionOrientationScale(v0, q1, v1); |
| VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); |
| VERIFY_IS_APPROX(t1 * v1, t0 * v1); |
| |
| // translation * vector |
| t0.setIdentity(); |
| t0.translate(v0); |
| VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); |
| |
| // Conversion to matrix. |
| Transform3 t3; |
| t3.linear() = q1.toRotationMatrix(); |
| t3.translation() = v1; |
| Matrix4 m3 = t3.matrix(); |
| VERIFY((m3 * m3.inverse()).isIdentity(test_precision<Scalar>())); |
| // Verify implicit last row is initialized. |
| VERIFY_IS_APPROX(Vector4(m3.row(3)), Vector4(0.0, 0.0, 0.0, 1.0)); |
| |
| VERIFY_IS_APPROX(t3.rotation(), t3.linear()); |
| if (Mode == Isometry) VERIFY(t3.rotation().data() == t3.linear().data()); |
| } |
| |
| template <typename Scalar, int Mode, int Options> |
| void transformations_computed_scaling_continuity() { |
| typedef Matrix<Scalar, 3, 1> Vector3; |
| typedef Transform<Scalar, 3, Mode, Options> Transform3; |
| typedef Matrix<Scalar, 3, 3> Matrix3; |
| |
| // Given: two transforms that differ by '2*eps'. |
| Scalar eps(1e-3); |
| Vector3 v0 = Vector3::Random().normalized(), v1 = Vector3::Random().normalized(), v3 = Vector3::Random().normalized(); |
| Transform3 t0, t1; |
| // The interesting case is when their determinants have different signs. |
| Matrix3 rank2 = 50 * v0 * v0.adjoint() + 20 * v1 * v1.adjoint(); |
| t0.linear() = rank2 + eps * v3 * v3.adjoint(); |
| t1.linear() = rank2 - eps * v3 * v3.adjoint(); |
| |
| // When: computing the rotation-scaling parts |
| Matrix3 r0, s0, r1, s1; |
| t0.computeRotationScaling(&r0, &s0); |
| t1.computeRotationScaling(&r1, &s1); |
| |
| // Then: the scaling parts should differ by no more than '2*eps'. |
| const Scalar c(2.1); // 2 + room for rounding errors |
| VERIFY((s0 - s1).norm() < c * eps); |
| } |
| |
| EIGEN_DECLARE_TEST(geo_transformations) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1((transformations<double, Affine, AutoAlign>())); |
| CALL_SUBTEST_1((non_projective_only<double, Affine, AutoAlign>())); |
| CALL_SUBTEST_1((transformations_computed_scaling_continuity<double, Affine, AutoAlign>())); |
| |
| CALL_SUBTEST_2((transformations<float, AffineCompact, AutoAlign>())); |
| CALL_SUBTEST_2((non_projective_only<float, AffineCompact, AutoAlign>())); |
| CALL_SUBTEST_2((transform_alignment<float>())); |
| |
| CALL_SUBTEST_3((transformations<double, Projective, AutoAlign>())); |
| CALL_SUBTEST_3((transformations<double, Projective, DontAlign>())); |
| CALL_SUBTEST_3((transform_alignment<double>())); |
| |
| CALL_SUBTEST_4((transformations<float, Affine, RowMajor | AutoAlign>())); |
| CALL_SUBTEST_4((non_projective_only<float, Affine, RowMajor>())); |
| |
| CALL_SUBTEST_5((transformations<double, AffineCompact, RowMajor | AutoAlign>())); |
| CALL_SUBTEST_5((non_projective_only<double, AffineCompact, RowMajor>())); |
| |
| CALL_SUBTEST_6((transformations<double, Projective, RowMajor | AutoAlign>())); |
| CALL_SUBTEST_6((transformations<double, Projective, RowMajor | DontAlign>())); |
| |
| CALL_SUBTEST_7((transform_products<double, 3, RowMajor | AutoAlign>())); |
| CALL_SUBTEST_7((transform_products<float, 2, AutoAlign>())); |
| |
| CALL_SUBTEST_8((transform_associativity<double, 2, ColMajor>( |
| Rotation2D<double>(internal::random<double>() * double(EIGEN_PI))))); |
| CALL_SUBTEST_8((transform_associativity<double, 3, ColMajor>(Quaterniond::UnitRandom()))); |
| |
| CALL_SUBTEST_9((transformations_no_scale<double, Affine, AutoAlign>())); |
| CALL_SUBTEST_9((transformations_no_scale<double, Isometry, AutoAlign>())); |
| } |
| } |