| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | // discard stack allocation as that too bypasses malloc | 
 | #define EIGEN_STACK_ALLOCATION_LIMIT 0 | 
 | // heap allocation will raise an assert if enabled at runtime | 
 | #define EIGEN_RUNTIME_NO_MALLOC | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/Cholesky> | 
 | #include <Eigen/Eigenvalues> | 
 | #include <Eigen/LU> | 
 | #include <Eigen/QR> | 
 | #include <Eigen/SVD> | 
 |  | 
 | template <typename MatrixType> | 
 | void nomalloc(const MatrixType& m) { | 
 |   /* this test check no dynamic memory allocation are issued with fixed-size matrices | 
 |    */ | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |  | 
 |   Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
 |  | 
 |   VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2); | 
 |   VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c))); | 
 |   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), (m1.array() * m1.array()).matrix()); | 
 |   VERIFY_IS_APPROX((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2)); | 
 |  | 
 |   m2.col(0).noalias() = m1 * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.adjoint() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); | 
 |   m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); | 
 |  | 
 |   m2.row(0).noalias() = m1.row(0) * m1; | 
 |   m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1; | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); | 
 |   VERIFY_IS_APPROX(m2, m2); | 
 |  | 
 |   m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); | 
 |   m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint(); | 
 |  | 
 |   m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>(); | 
 |   VERIFY_IS_APPROX(m2, m2); | 
 |  | 
 |   m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0); | 
 |   m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint(); | 
 |   m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint(); | 
 |  | 
 |   m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>(); | 
 |   m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>(); | 
 |   VERIFY_IS_APPROX(m2, m2); | 
 |  | 
 |   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), -1); | 
 |   m2.template selfadjointView<Upper>().rankUpdate(m1.row(0), -1); | 
 |   m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0));  // rank-2 | 
 |  | 
 |   // The following fancy matrix-matrix products are not safe yet regarding static allocation | 
 |   m2.template selfadjointView<Lower>().rankUpdate(m1); | 
 |   m2 += m2.template triangularView<Upper>() * m1; | 
 |   m2.template triangularView<Upper>() = m2 * m2; | 
 |   m1 += m1.template selfadjointView<Lower>() * m2; | 
 |   VERIFY_IS_APPROX(m2, m2); | 
 | } | 
 |  | 
 | template <typename Scalar> | 
 | void ctms_decompositions() { | 
 |   const int maxSize = 16; | 
 |   const int size = 12; | 
 |  | 
 |   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> Matrix; | 
 |  | 
 |   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, 0, maxSize, 1> Vector; | 
 |  | 
 |   typedef Eigen::Matrix<std::complex<Scalar>, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> ComplexMatrix; | 
 |  | 
 |   const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size)); | 
 |   Matrix X(size, size); | 
 |   const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); | 
 |   const Matrix saA = A.adjoint() * A; | 
 |   const Vector b(Vector::Random(size)); | 
 |   Vector x(size); | 
 |  | 
 |   // Cholesky module | 
 |   Eigen::LLT<Matrix> LLT; | 
 |   LLT.compute(A); | 
 |   X = LLT.solve(B); | 
 |   x = LLT.solve(b); | 
 |   Eigen::LDLT<Matrix> LDLT; | 
 |   LDLT.compute(A); | 
 |   X = LDLT.solve(B); | 
 |   x = LDLT.solve(b); | 
 |  | 
 |   // Eigenvalues module | 
 |   Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; | 
 |   hessDecomp.compute(complexA); | 
 |   Eigen::ComplexSchur<ComplexMatrix> cSchur(size); | 
 |   cSchur.compute(complexA); | 
 |   Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; | 
 |   cEigSolver.compute(complexA); | 
 |   Eigen::EigenSolver<Matrix> eigSolver; | 
 |   eigSolver.compute(A); | 
 |   Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); | 
 |   saEigSolver.compute(saA); | 
 |   Eigen::Tridiagonalization<Matrix> tridiag; | 
 |   tridiag.compute(saA); | 
 |  | 
 |   // LU module | 
 |   Eigen::PartialPivLU<Matrix> ppLU; | 
 |   ppLU.compute(A); | 
 |   X = ppLU.solve(B); | 
 |   x = ppLU.solve(b); | 
 |   Eigen::FullPivLU<Matrix> fpLU; | 
 |   fpLU.compute(A); | 
 |   X = fpLU.solve(B); | 
 |   x = fpLU.solve(b); | 
 |  | 
 |   // QR module | 
 |   Eigen::HouseholderQR<Matrix> hQR; | 
 |   hQR.compute(A); | 
 |   X = hQR.solve(B); | 
 |   x = hQR.solve(b); | 
 |   Eigen::ColPivHouseholderQR<Matrix> cpQR; | 
 |   cpQR.compute(A); | 
 |   X = cpQR.solve(B); | 
 |   x = cpQR.solve(b); | 
 |   Eigen::FullPivHouseholderQR<Matrix> fpQR; | 
 |   fpQR.compute(A); | 
 |   // FIXME X = fpQR.solve(B); | 
 |   x = fpQR.solve(b); | 
 |  | 
 |   // SVD module | 
 |   Eigen::JacobiSVD<Matrix, ComputeFullU | ComputeFullV> jSVD; | 
 |   jSVD.compute(A); | 
 | } | 
 |  | 
 | void test_zerosized() { | 
 |   // default constructors: | 
 |   Eigen::MatrixXd A; | 
 |   Eigen::VectorXd v; | 
 |   // explicit zero-sized: | 
 |   Eigen::ArrayXXd A0(0, 0); | 
 |   Eigen::ArrayXd v0(0); | 
 |  | 
 |   // assigning empty objects to each other: | 
 |   A = A0; | 
 |   v = v0; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void test_reference(const MatrixType& m) { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor }; | 
 |   enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor }; | 
 |   Index rows = m.rows(), cols = m.cols(); | 
 |   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag> MatrixX; | 
 |   typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT; | 
 |   // Dynamic reference: | 
 |   typedef Eigen::Ref<const MatrixX> Ref; | 
 |   typedef Eigen::Ref<const MatrixXT> RefT; | 
 |  | 
 |   Ref r1(m); | 
 |   Ref r2(m.block(rows / 3, cols / 4, rows / 2, cols / 2)); | 
 |   RefT r3(m.transpose()); | 
 |   RefT r4(m.topLeftCorner(rows / 2, cols / 2).transpose()); | 
 |  | 
 |   VERIFY_RAISES_ASSERT(RefT r5(m)); | 
 |   VERIFY_RAISES_ASSERT(Ref r6(m.transpose())); | 
 |   VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m)); | 
 |  | 
 |   // Copy constructors shall also never malloc | 
 |   Ref r8 = r1; | 
 |   RefT r9 = r3; | 
 |  | 
 |   // Initializing from a compatible Ref shall also never malloc | 
 |   Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10 = r8, r11 = m; | 
 |  | 
 |   // Initializing from an incompatible Ref will malloc: | 
 |   typedef Eigen::Ref<const MatrixX, Aligned> RefAligned; | 
 |   VERIFY_RAISES_ASSERT(RefAligned r12 = r10); | 
 |   VERIFY_RAISES_ASSERT(Ref r13 = r10);  // r10 has more dynamic strides | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(nomalloc) { | 
 |   // create some dynamic objects | 
 |   Eigen::MatrixXd M1 = MatrixXd::Random(3, 3); | 
 |   Ref<const MatrixXd> R1 = 2.0 * M1;  // Ref requires temporary | 
 |  | 
 |   // from here on prohibit malloc: | 
 |   Eigen::internal::set_is_malloc_allowed(false); | 
 |  | 
 |   // check that our operator new is indeed called: | 
 |   VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3, 3))); | 
 |   CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>())); | 
 |   CALL_SUBTEST_2(nomalloc(Matrix4d())); | 
 |   CALL_SUBTEST_3(nomalloc(Matrix<float, 32, 32>())); | 
 |  | 
 |   // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) | 
 |   CALL_SUBTEST_4(ctms_decompositions<float>()); | 
 |  | 
 |   CALL_SUBTEST_5(test_zerosized()); | 
 |  | 
 |   CALL_SUBTEST_6(test_reference(Matrix<float, 32, 32>())); | 
 |   CALL_SUBTEST_7(test_reference(R1)); | 
 |   CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2)); | 
 |  | 
 |   // freeing is now possible | 
 |   Eigen::internal::set_is_malloc_allowed(true); | 
 | } |