| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "packetmath_test_shared.h" |
| #include "random_without_cast_overflow.h" |
| #include "packet_ostream.h" |
| |
| template <typename T> |
| inline T REF_ADD(const T& a, const T& b) { |
| return a + b; |
| } |
| template <typename T> |
| inline T REF_SUB(const T& a, const T& b) { |
| return a - b; |
| } |
| template <typename T> |
| inline T REF_MUL(const T& a, const T& b) { |
| return a * b; |
| } |
| template <typename T> |
| inline T REF_MADD(const T& a, const T& b, const T& c) { |
| return a * b + c; |
| } |
| template <typename T> |
| inline T REF_MSUB(const T& a, const T& b, const T& c) { |
| return a * b - c; |
| } |
| template <typename T> |
| inline T REF_NMADD(const T& a, const T& b, const T& c) { |
| return c - a * b; |
| } |
| template <typename T> |
| inline T REF_NMSUB(const T& a, const T& b, const T& c) { |
| return test::negate(a * b + c); |
| } |
| template <typename T> |
| inline T REF_DIV(const T& a, const T& b) { |
| return a / b; |
| } |
| template <typename T> |
| inline T REF_RECIPROCAL(const T& a) { |
| return T(1) / a; |
| } |
| template <typename T> |
| inline T REF_ABS_DIFF(const T& a, const T& b) { |
| return a > b ? a - b : b - a; |
| } |
| |
| // Specializations for bool. |
| template <> |
| inline bool REF_ADD(const bool& a, const bool& b) { |
| return a || b; |
| } |
| template <> |
| inline bool REF_SUB(const bool& a, const bool& b) { |
| return a ^ b; |
| } |
| template <> |
| inline bool REF_MUL(const bool& a, const bool& b) { |
| return a && b; |
| } |
| template <> |
| inline bool REF_MADD(const bool& a, const bool& b, const bool& c) { |
| return (a && b) || c; |
| } |
| |
| template <typename T> |
| inline T REF_FREXP(const T& x, T& exp) { |
| int iexp = 0; |
| EIGEN_USING_STD(frexp) |
| const T out = static_cast<T>(frexp(x, &iexp)); |
| exp = static_cast<T>(iexp); |
| |
| // The exponent value is unspecified if the input is inf or NaN, but MSVC |
| // seems to set it to 1. We need to set it back to zero for consistency. |
| if (!(numext::isfinite)(x)) { |
| exp = T(0); |
| } |
| return out; |
| } |
| |
| template <typename T> |
| inline T REF_LDEXP(const T& x, const T& exp) { |
| EIGEN_USING_STD(ldexp) |
| return static_cast<T>(ldexp(x, static_cast<int>(exp))); |
| } |
| |
| // Uses pcast to cast from one array to another. |
| template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> |
| struct pcast_array; |
| |
| template <typename SrcPacket, typename TgtPacket, int TgtCoeffRatio> |
| struct pcast_array<SrcPacket, TgtPacket, 1, TgtCoeffRatio> { |
| typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar; |
| typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar; |
| static void cast(const SrcScalar* src, size_t size, TgtScalar* dst) { |
| static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; |
| size_t i; |
| for (i = 0; i < size && i + SrcPacketSize <= size; i += TgtPacketSize) { |
| internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(internal::ploadu<SrcPacket>(src + i))); |
| } |
| // Leftovers that cannot be loaded into a packet. |
| for (; i < size; ++i) { |
| dst[i] = static_cast<TgtScalar>(src[i]); |
| } |
| } |
| }; |
| |
| template <typename SrcPacket, typename TgtPacket> |
| struct pcast_array<SrcPacket, TgtPacket, 2, 1> { |
| static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, |
| typename internal::unpacket_traits<TgtPacket>::type* dst) { |
| static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; |
| for (size_t i = 0; i < size; i += TgtPacketSize) { |
| SrcPacket a = internal::ploadu<SrcPacket>(src + i); |
| SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize); |
| internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b)); |
| } |
| } |
| }; |
| |
| template <typename SrcPacket, typename TgtPacket> |
| struct pcast_array<SrcPacket, TgtPacket, 4, 1> { |
| static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, |
| typename internal::unpacket_traits<TgtPacket>::type* dst) { |
| static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; |
| for (size_t i = 0; i < size; i += TgtPacketSize) { |
| SrcPacket a = internal::ploadu<SrcPacket>(src + i); |
| SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize); |
| SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize); |
| SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize); |
| internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d)); |
| } |
| } |
| }; |
| |
| template <typename SrcPacket, typename TgtPacket> |
| struct pcast_array<SrcPacket, TgtPacket, 8, 1> { |
| static void cast(const typename internal::unpacket_traits<SrcPacket>::type* src, size_t size, |
| typename internal::unpacket_traits<TgtPacket>::type* dst) { |
| static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; |
| for (size_t i = 0; i < size; i += TgtPacketSize) { |
| SrcPacket a = internal::ploadu<SrcPacket>(src + i); |
| SrcPacket b = internal::ploadu<SrcPacket>(src + i + SrcPacketSize); |
| SrcPacket c = internal::ploadu<SrcPacket>(src + i + 2 * SrcPacketSize); |
| SrcPacket d = internal::ploadu<SrcPacket>(src + i + 3 * SrcPacketSize); |
| SrcPacket e = internal::ploadu<SrcPacket>(src + i + 4 * SrcPacketSize); |
| SrcPacket f = internal::ploadu<SrcPacket>(src + i + 5 * SrcPacketSize); |
| SrcPacket g = internal::ploadu<SrcPacket>(src + i + 6 * SrcPacketSize); |
| SrcPacket h = internal::ploadu<SrcPacket>(src + i + 7 * SrcPacketSize); |
| internal::pstoreu(dst + i, internal::pcast<SrcPacket, TgtPacket>(a, b, c, d, e, f, g, h)); |
| } |
| } |
| }; |
| |
| template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio, bool CanCast = false> |
| struct test_cast_helper; |
| |
| template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> |
| struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, false> { |
| static void run() {} |
| }; |
| |
| template <typename SrcPacket, typename TgtPacket, int SrcCoeffRatio, int TgtCoeffRatio> |
| struct test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, true> { |
| static void run() { |
| typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar; |
| typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar; |
| static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; |
| static const int BlockSize = SrcPacketSize * SrcCoeffRatio; |
| eigen_assert(BlockSize == TgtPacketSize * TgtCoeffRatio && "Packet sizes and cast ratios are mismatched."); |
| |
| static const int DataSize = 10 * BlockSize; |
| EIGEN_ALIGN_MAX SrcScalar data1[DataSize]; |
| EIGEN_ALIGN_MAX TgtScalar data2[DataSize]; |
| EIGEN_ALIGN_MAX TgtScalar ref[DataSize]; |
| |
| // Construct a packet of scalars that will not overflow when casting |
| for (int i = 0; i < DataSize; ++i) { |
| data1[i] = internal::random_without_cast_overflow<SrcScalar, TgtScalar>::value(); |
| } |
| |
| for (int i = 0; i < DataSize; ++i) { |
| ref[i] = static_cast<const TgtScalar>(data1[i]); |
| } |
| |
| pcast_array<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio>::cast(data1, DataSize, data2); |
| |
| VERIFY(test::areApprox(ref, data2, DataSize) && "internal::pcast<>"); |
| } |
| }; |
| |
| template <typename SrcPacket, typename TgtPacket> |
| struct test_cast { |
| static void run() { |
| typedef typename internal::unpacket_traits<SrcPacket>::type SrcScalar; |
| typedef typename internal::unpacket_traits<TgtPacket>::type TgtScalar; |
| typedef typename internal::type_casting_traits<SrcScalar, TgtScalar> TypeCastingTraits; |
| static const int SrcCoeffRatio = TypeCastingTraits::SrcCoeffRatio; |
| static const int TgtCoeffRatio = TypeCastingTraits::TgtCoeffRatio; |
| static const int SrcPacketSize = internal::unpacket_traits<SrcPacket>::size; |
| static const int TgtPacketSize = internal::unpacket_traits<TgtPacket>::size; |
| static const bool HasCast = |
| internal::unpacket_traits<SrcPacket>::vectorizable && internal::unpacket_traits<TgtPacket>::vectorizable && |
| TypeCastingTraits::VectorizedCast && (SrcPacketSize * SrcCoeffRatio == TgtPacketSize * TgtCoeffRatio); |
| test_cast_helper<SrcPacket, TgtPacket, SrcCoeffRatio, TgtCoeffRatio, HasCast>::run(); |
| } |
| }; |
| |
| template <typename SrcPacket, typename TgtScalar, |
| typename TgtPacket = typename internal::packet_traits<TgtScalar>::type, |
| bool Vectorized = internal::packet_traits<TgtScalar>::Vectorizable, |
| bool HasHalf = !internal::is_same<typename internal::unpacket_traits<TgtPacket>::half, TgtPacket>::value> |
| struct test_cast_runner; |
| |
| template <typename SrcPacket, typename TgtScalar, typename TgtPacket> |
| struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, false> { |
| static void run() { test_cast<SrcPacket, TgtPacket>::run(); } |
| }; |
| |
| template <typename SrcPacket, typename TgtScalar, typename TgtPacket> |
| struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, true, true> { |
| static void run() { |
| test_cast<SrcPacket, TgtPacket>::run(); |
| test_cast_runner<SrcPacket, TgtScalar, typename internal::unpacket_traits<TgtPacket>::half>::run(); |
| } |
| }; |
| |
| template <typename SrcPacket, typename TgtScalar, typename TgtPacket> |
| struct test_cast_runner<SrcPacket, TgtScalar, TgtPacket, false, false> { |
| static void run() {} |
| }; |
| |
| template <typename Scalar, typename Packet, typename EnableIf = void> |
| struct packetmath_pcast_ops_runner { |
| static void run() { |
| test_cast_runner<Packet, float>::run(); |
| test_cast_runner<Packet, double>::run(); |
| test_cast_runner<Packet, int8_t>::run(); |
| test_cast_runner<Packet, uint8_t>::run(); |
| test_cast_runner<Packet, int16_t>::run(); |
| test_cast_runner<Packet, uint16_t>::run(); |
| test_cast_runner<Packet, int32_t>::run(); |
| test_cast_runner<Packet, uint32_t>::run(); |
| test_cast_runner<Packet, int64_t>::run(); |
| test_cast_runner<Packet, uint64_t>::run(); |
| test_cast_runner<Packet, bool>::run(); |
| test_cast_runner<Packet, std::complex<float>>::run(); |
| test_cast_runner<Packet, std::complex<double>>::run(); |
| test_cast_runner<Packet, half>::run(); |
| test_cast_runner<Packet, bfloat16>::run(); |
| } |
| }; |
| |
| // Only some types support cast from std::complex<>. |
| template <typename Scalar, typename Packet> |
| struct packetmath_pcast_ops_runner<Scalar, Packet, std::enable_if_t<NumTraits<Scalar>::IsComplex>> { |
| static void run() { |
| test_cast_runner<Packet, std::complex<float>>::run(); |
| test_cast_runner<Packet, std::complex<double>>::run(); |
| test_cast_runner<Packet, half>::run(); |
| test_cast_runner<Packet, bfloat16>::run(); |
| } |
| }; |
| |
| template <typename Scalar, typename Packet> |
| void packetmath_boolean_mask_ops() { |
| using RealScalar = typename NumTraits<Scalar>::Real; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| const int size = 2 * PacketSize; |
| EIGEN_ALIGN_MAX Scalar data1[size]; |
| EIGEN_ALIGN_MAX Scalar data2[size]; |
| EIGEN_ALIGN_MAX Scalar ref[size]; |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = internal::random<Scalar>(); |
| } |
| CHECK_CWISE1(internal::ptrue, internal::ptrue); |
| CHECK_CWISE2_IF(true, internal::pandnot, internal::pandnot); |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = Scalar(RealScalar(i)); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| |
| CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); |
| |
| // Test (-0) == (0) for signed operations |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = Scalar(-0.0); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); |
| |
| // Test NaN |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = NumTraits<Scalar>::quiet_NaN(); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| CHECK_CWISE2_IF(true, internal::pcmp_eq, internal::pcmp_eq); |
| } |
| |
| template <typename Scalar, typename Packet> |
| void packetmath_boolean_mask_ops_real() { |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| const int size = 2 * PacketSize; |
| EIGEN_ALIGN_MAX Scalar data1[size]; |
| EIGEN_ALIGN_MAX Scalar data2[size]; |
| EIGEN_ALIGN_MAX Scalar ref[size]; |
| |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = internal::random<Scalar>(); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| |
| CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); |
| |
| // Test (-0) <=/< (0) for signed operations |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = Scalar(-0.0); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); |
| |
| // Test NaN |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = NumTraits<Scalar>::quiet_NaN(); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| CHECK_CWISE2_IF(true, internal::pcmp_lt_or_nan, internal::pcmp_lt_or_nan); |
| } |
| |
| template <typename Scalar, typename Packet, typename EnableIf = void> |
| struct packetmath_boolean_mask_ops_notcomplex_test { |
| static void run() {} |
| }; |
| |
| template <typename Scalar, typename Packet> |
| struct packetmath_boolean_mask_ops_notcomplex_test< |
| Scalar, Packet, |
| std::enable_if_t<internal::packet_traits<Scalar>::HasCmp && !internal::is_same<Scalar, bool>::value>> { |
| static void run() { |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| const int size = 2 * PacketSize; |
| EIGEN_ALIGN_MAX Scalar data1[size]; |
| EIGEN_ALIGN_MAX Scalar data2[size]; |
| EIGEN_ALIGN_MAX Scalar ref[size]; |
| |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = internal::random<Scalar>(); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| |
| CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); |
| CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); |
| |
| // Test (-0) <=/< (0) for signed operations |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = Scalar(-0.0); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); |
| CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); |
| |
| // Test NaN |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = NumTraits<Scalar>::quiet_NaN(); |
| data1[i + PacketSize] = internal::random<bool>() ? data1[i] : Scalar(0); |
| } |
| CHECK_CWISE2_IF(true, internal::pcmp_le, internal::pcmp_le); |
| CHECK_CWISE2_IF(true, internal::pcmp_lt, internal::pcmp_lt); |
| } |
| }; |
| |
| template <typename Scalar, typename Packet, typename EnableIf = void> |
| struct packetmath_minus_zero_add_test { |
| static void run() {} |
| }; |
| |
| template <typename Scalar, typename Packet> |
| struct packetmath_minus_zero_add_test<Scalar, Packet, std::enable_if_t<!NumTraits<Scalar>::IsInteger>> { |
| static void run() { |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| const int size = 2 * PacketSize; |
| EIGEN_ALIGN_MAX Scalar data1[size] = {}; |
| EIGEN_ALIGN_MAX Scalar data2[size] = {}; |
| EIGEN_ALIGN_MAX Scalar ref[size] = {}; |
| |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = Scalar(-0.0); |
| data1[i + PacketSize] = Scalar(-0.0); |
| } |
| CHECK_CWISE2_IF(internal::packet_traits<Scalar>::HasAdd, REF_ADD, internal::padd); |
| } |
| }; |
| |
| // Ensure optimization barrier compiles and doesn't modify contents. |
| // Only applies to raw types, so will not work for std::complex, Eigen::half |
| // or Eigen::bfloat16. For those you would need to refer to an underlying |
| // storage element. |
| template <typename Packet, typename EnableIf = void> |
| struct eigen_optimization_barrier_test { |
| static void run() {} |
| }; |
| |
| template <typename Packet> |
| struct eigen_optimization_barrier_test< |
| Packet, std::enable_if_t<!NumTraits<Packet>::IsComplex && !internal::is_same<Packet, Eigen::half>::value && |
| !internal::is_same<Packet, Eigen::bfloat16>::value>> { |
| static void run() { |
| typedef typename internal::unpacket_traits<Packet>::type Scalar; |
| Scalar s = internal::random<Scalar>(); |
| Packet barrier = internal::pset1<Packet>(s); |
| EIGEN_OPTIMIZATION_BARRIER(barrier); |
| eigen_assert(s == internal::pfirst(barrier) && "EIGEN_OPTIMIZATION_BARRIER"); |
| } |
| }; |
| |
| template <typename Scalar, typename Packet, bool HasNegate = internal::packet_traits<Scalar>::HasNegate> |
| struct negate_test_impl { |
| static void run_negate(Scalar* data1, Scalar* data2, Scalar* ref, int PacketSize) { |
| CHECK_CWISE1_IF(HasNegate, test::negate, internal::pnegate); |
| } |
| static void run_nmsub(Scalar* data1, Scalar* data2, Scalar* ref, int PacketSize) { |
| CHECK_CWISE3_IF(HasNegate, REF_NMSUB, internal::pnmsub); |
| } |
| }; |
| |
| template <typename Scalar, typename Packet> |
| struct negate_test_impl<Scalar, Packet, false> { |
| static void run_negate(Scalar*, Scalar*, Scalar*, int) {} |
| static void run_nmsub(Scalar*, Scalar*, Scalar*, int) {} |
| }; |
| |
| template <typename Scalar, typename Packet> |
| void negate_test(Scalar* data1, Scalar* data2, Scalar* ref, int size) { |
| negate_test_impl<Scalar, Packet>::run_negate(data1, data2, ref, size); |
| } |
| |
| template <typename Scalar, typename Packet> |
| void nmsub_test(Scalar* data1, Scalar* data2, Scalar* ref, int size) { |
| negate_test_impl<Scalar, Packet>::run_nmsub(data1, data2, ref, size); |
| } |
| |
| template <typename Scalar, typename Packet> |
| void packetmath() { |
| typedef internal::packet_traits<Scalar> PacketTraits; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| if (g_first_pass) |
| std::cerr << "=== Testing packet of type '" << typeid(Packet).name() << "' and scalar type '" |
| << typeid(Scalar).name() << "' and size '" << PacketSize << "' ===\n"; |
| |
| const int max_size = PacketSize > 4 ? PacketSize : 4; |
| const int size = PacketSize * max_size; |
| EIGEN_ALIGN_MAX Scalar data1[size]; |
| EIGEN_ALIGN_MAX Scalar data2[size]; |
| EIGEN_ALIGN_MAX Scalar data3[size]; |
| EIGEN_ALIGN_MAX Scalar ref[size]; |
| RealScalar refvalue = RealScalar(0); |
| |
| eigen_optimization_barrier_test<Packet>::run(); |
| eigen_optimization_barrier_test<Scalar>::run(); |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = internal::random<Scalar>() / RealScalar(PacketSize); |
| data2[i] = internal::random<Scalar>() / RealScalar(PacketSize); |
| refvalue = (std::max)(refvalue, numext::abs(data1[i])); |
| } |
| |
| internal::pstore(data2, internal::pload<Packet>(data1)); |
| VERIFY(test::areApprox(data1, data2, PacketSize) && "aligned load/store"); |
| |
| for (int offset = 0; offset < PacketSize; ++offset) { |
| internal::pstore(data2, internal::ploadu<Packet>(data1 + offset)); |
| VERIFY(test::areApprox(data1 + offset, data2, PacketSize) && "internal::ploadu"); |
| } |
| |
| for (int offset = 0; offset < PacketSize; ++offset) { |
| internal::pstoreu(data2 + offset, internal::pload<Packet>(data1)); |
| VERIFY(test::areApprox(data1, data2 + offset, PacketSize) && "internal::pstoreu"); |
| } |
| |
| for (int M = 0; M < PacketSize; ++M) { |
| for (int N = 0; N <= PacketSize; ++N) { |
| for (int j = 0; j < size; ++j) { |
| data1[j] = internal::random<Scalar>() / RealScalar(PacketSize); |
| data2[j] = internal::random<Scalar>() / RealScalar(PacketSize); |
| refvalue = (std::max)(refvalue, numext::abs(data1[j])); |
| } |
| |
| if (M == 0) { |
| internal::pstore_partial(data2, internal::pload_partial<Packet>(data1, N), N); |
| VERIFY(test::areApprox(data1, data2, N) && "aligned loadN/storeN"); |
| |
| for (int offset = 0; offset < PacketSize; ++offset) { |
| internal::pstore_partial(data2, internal::ploadu_partial<Packet>(data1 + offset, N), N); |
| VERIFY(test::areApprox(data1 + offset, data2, N) && "internal::ploadu_partial"); |
| } |
| |
| for (int offset = 0; offset < PacketSize; ++offset) { |
| internal::pstoreu_partial(data2 + offset, internal::pload_partial<Packet>(data1, N), N); |
| VERIFY(test::areApprox(data1, data2 + offset, N) && "internal::pstoreu_partial"); |
| } |
| } |
| |
| if (N + M > PacketSize) continue; // Don't read or write past end of Packet |
| |
| internal::pstore_partial(data2, internal::pload_partial<Packet>(data1, N, M), N, M); |
| VERIFY(test::areApprox(data1, data2, N) && "aligned offset loadN/storeN"); |
| } |
| } |
| |
| if (internal::unpacket_traits<Packet>::masked_load_available) { |
| test::packet_helper<internal::unpacket_traits<Packet>::masked_load_available, Packet> h; |
| unsigned long long max_umask = (0x1ull << PacketSize); |
| |
| for (int offset = 0; offset < PacketSize; ++offset) { |
| for (unsigned long long umask = 0; umask < max_umask; ++umask) { |
| h.store(data2, h.load(data1 + offset, umask)); |
| for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0); |
| VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::ploadu masked"); |
| } |
| } |
| } |
| |
| if (internal::unpacket_traits<Packet>::masked_store_available) { |
| test::packet_helper<internal::unpacket_traits<Packet>::masked_store_available, Packet> h; |
| unsigned long long max_umask = (0x1ull << PacketSize); |
| |
| for (int offset = 0; offset < PacketSize; ++offset) { |
| for (unsigned long long umask = 0; umask < max_umask; ++umask) { |
| internal::pstore(data2, internal::pset1<Packet>(Scalar(0))); |
| h.store(data2, h.loadu(data1 + offset), umask); |
| for (int k = 0; k < PacketSize; ++k) data3[k] = ((umask & (0x1ull << k)) >> k) ? data1[k + offset] : Scalar(0); |
| VERIFY(test::areApprox(data3, data2, PacketSize) && "internal::pstoreu masked"); |
| } |
| } |
| } |
| |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasAdd); |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasSub); |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMul); |
| |
| CHECK_CWISE2_IF(PacketTraits::HasAdd, REF_ADD, internal::padd); |
| CHECK_CWISE2_IF(PacketTraits::HasSub, REF_SUB, internal::psub); |
| CHECK_CWISE2_IF(PacketTraits::HasMul, REF_MUL, internal::pmul); |
| CHECK_CWISE2_IF(PacketTraits::HasDiv, REF_DIV, internal::pdiv); |
| |
| negate_test<Scalar, Packet>(data1, data2, ref, PacketSize); |
| CHECK_CWISE1_IF(PacketTraits::HasReciprocal, REF_RECIPROCAL, internal::preciprocal); |
| CHECK_CWISE1(numext::conj, internal::pconj); |
| CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign); |
| |
| for (int offset = 0; offset < 3; ++offset) { |
| for (int i = 0; i < PacketSize; ++i) ref[i] = data1[offset]; |
| internal::pstore(data2, internal::pset1<Packet>(data1[offset])); |
| VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::pset1"); |
| } |
| |
| { |
| for (int i = 0; i < PacketSize * 4; ++i) ref[i] = data1[i / PacketSize]; |
| Packet A0, A1, A2, A3; |
| internal::pbroadcast4<Packet>(data1, A0, A1, A2, A3); |
| internal::pstore(data2 + 0 * PacketSize, A0); |
| internal::pstore(data2 + 1 * PacketSize, A1); |
| internal::pstore(data2 + 2 * PacketSize, A2); |
| internal::pstore(data2 + 3 * PacketSize, A3); |
| VERIFY(test::areApprox(ref, data2, 4 * PacketSize) && "internal::pbroadcast4"); |
| } |
| |
| { |
| for (int i = 0; i < PacketSize * 2; ++i) ref[i] = data1[i / PacketSize]; |
| Packet A0, A1; |
| internal::pbroadcast2<Packet>(data1, A0, A1); |
| internal::pstore(data2 + 0 * PacketSize, A0); |
| internal::pstore(data2 + 1 * PacketSize, A1); |
| VERIFY(test::areApprox(ref, data2, 2 * PacketSize) && "internal::pbroadcast2"); |
| } |
| |
| VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst"); |
| |
| if (PacketSize > 1) { |
| // apply different offsets to check that ploaddup is robust to unaligned inputs |
| for (int offset = 0; offset < 4; ++offset) { |
| for (int i = 0; i < PacketSize / 2; ++i) ref[2 * i + 0] = ref[2 * i + 1] = data1[offset + i]; |
| internal::pstore(data2, internal::ploaddup<Packet>(data1 + offset)); |
| VERIFY(test::areApprox(ref, data2, PacketSize) && "ploaddup"); |
| } |
| } |
| |
| if (PacketSize > 2) { |
| // apply different offsets to check that ploadquad is robust to unaligned inputs |
| for (int offset = 0; offset < 4; ++offset) { |
| for (int i = 0; i < PacketSize / 4; ++i) |
| ref[4 * i + 0] = ref[4 * i + 1] = ref[4 * i + 2] = ref[4 * i + 3] = data1[offset + i]; |
| internal::pstore(data2, internal::ploadquad<Packet>(data1 + offset)); |
| VERIFY(test::areApprox(ref, data2, PacketSize) && "ploadquad"); |
| } |
| } |
| |
| ref[0] = Scalar(0); |
| for (int i = 0; i < PacketSize; ++i) ref[0] += data1[i]; |
| VERIFY(test::isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux"); |
| |
| if (!internal::is_same<Packet, typename internal::unpacket_traits<Packet>::half>::value) { |
| int HalfPacketSize = PacketSize > 4 ? PacketSize / 2 : PacketSize; |
| for (int i = 0; i < HalfPacketSize; ++i) ref[i] = Scalar(0); |
| for (int i = 0; i < PacketSize; ++i) ref[i % HalfPacketSize] += data1[i]; |
| internal::pstore(data2, internal::predux_half_dowto4(internal::pload<Packet>(data1))); |
| VERIFY(test::areApprox(ref, data2, HalfPacketSize) && "internal::predux_half_dowto4"); |
| } |
| |
| // Avoid overflows. |
| if (NumTraits<Scalar>::IsInteger && NumTraits<Scalar>::IsSigned && |
| Eigen::internal::unpacket_traits<Packet>::size > 1) { |
| Scalar limit = |
| static_cast<Scalar>(std::pow(static_cast<double>(numext::real(NumTraits<Scalar>::highest())), |
| 1.0 / static_cast<double>(Eigen::internal::unpacket_traits<Packet>::size))); |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = internal::random<Scalar>(-limit, limit); |
| } |
| } |
| ref[0] = Scalar(1); |
| for (int i = 0; i < PacketSize; ++i) ref[0] = REF_MUL(ref[0], data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul"); |
| |
| for (int i = 0; i < PacketSize; ++i) ref[i] = data1[PacketSize - i - 1]; |
| internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1))); |
| VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::preverse"); |
| |
| internal::PacketBlock<Packet> kernel; |
| for (int i = 0; i < PacketSize; ++i) { |
| kernel.packet[i] = internal::pload<Packet>(data1 + i * PacketSize); |
| } |
| ptranspose(kernel); |
| for (int i = 0; i < PacketSize; ++i) { |
| internal::pstore(data2, kernel.packet[i]); |
| for (int j = 0; j < PacketSize; ++j) { |
| VERIFY(test::isApproxAbs(data2[j], data1[i + j * PacketSize], refvalue) && "ptranspose"); |
| } |
| } |
| |
| // GeneralBlockPanelKernel also checks PacketBlock<Packet,(PacketSize%4)==0?4:PacketSize>; |
| if (PacketSize > 4 && PacketSize % 4 == 0) { |
| internal::PacketBlock<Packet, PacketSize % 4 == 0 ? 4 : PacketSize> kernel2; |
| for (int i = 0; i < 4; ++i) { |
| kernel2.packet[i] = internal::pload<Packet>(data1 + i * PacketSize); |
| } |
| ptranspose(kernel2); |
| int data_counter = 0; |
| for (int i = 0; i < PacketSize; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| data2[data_counter++] = data1[j * PacketSize + i]; |
| } |
| } |
| for (int i = 0; i < 4; ++i) { |
| internal::pstore(data3, kernel2.packet[i]); |
| for (int j = 0; j < PacketSize; ++j) { |
| VERIFY(test::isApproxAbs(data3[j], data2[i * PacketSize + j], refvalue) && "ptranspose"); |
| } |
| } |
| } |
| |
| if (PacketTraits::HasBlend) { |
| Packet thenPacket = internal::pload<Packet>(data1); |
| Packet elsePacket = internal::pload<Packet>(data2); |
| EIGEN_ALIGN_MAX internal::Selector<PacketSize> selector; |
| for (int i = 0; i < PacketSize; ++i) { |
| selector.select[i] = i; |
| } |
| |
| Packet blend = internal::pblend(selector, thenPacket, elsePacket); |
| EIGEN_ALIGN_MAX Scalar result[size]; |
| internal::pstore(result, blend); |
| for (int i = 0; i < PacketSize; ++i) { |
| VERIFY(test::isApproxAbs(result[i], (selector.select[i] ? data1[i] : data2[i]), refvalue)); |
| } |
| } |
| |
| { |
| for (int i = 0; i < PacketSize; ++i) { |
| // "if" mask |
| // Note: it's UB to load 0xFF directly into a `bool`. |
| uint8_t v = |
| internal::random<bool>() ? (std::is_same<Scalar, bool>::value ? static_cast<uint8_t>(true) : 0xff) : 0; |
| // Avoid strict aliasing violation by using memset. |
| memset(static_cast<void*>(data1 + i), v, sizeof(Scalar)); |
| // "then" packet |
| data1[i + PacketSize] = internal::random<Scalar>(); |
| // "else" packet |
| data1[i + 2 * PacketSize] = internal::random<Scalar>(); |
| } |
| CHECK_CWISE3_IF(true, internal::pselect, internal::pselect); |
| } |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = internal::random<Scalar>(); |
| } |
| CHECK_CWISE1(internal::pzero, internal::pzero); |
| CHECK_CWISE2_IF(true, internal::por, internal::por); |
| CHECK_CWISE2_IF(true, internal::pxor, internal::pxor); |
| CHECK_CWISE2_IF(true, internal::pand, internal::pand); |
| |
| packetmath_boolean_mask_ops<Scalar, Packet>(); |
| packetmath_pcast_ops_runner<Scalar, Packet>::run(); |
| packetmath_minus_zero_add_test<Scalar, Packet>::run(); |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = numext::abs(internal::random<Scalar>()); |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasSqrt, numext::sqrt, internal::psqrt); |
| CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt); |
| CHECK_CWISE3_IF(true, REF_MADD, internal::pmadd); |
| if (!std::is_same<Scalar, bool>::value && NumTraits<Scalar>::IsSigned) { |
| nmsub_test<Scalar, Packet>(data1, data2, ref, PacketSize); |
| } |
| |
| // For pmsub, pnmadd, the values can cancel each other to become near zero, |
| // which can lead to very flaky tests. Here we ensure the signs are such that |
| // they do not cancel. |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = numext::abs(internal::random<Scalar>()); |
| data1[i + PacketSize] = numext::abs(internal::random<Scalar>()); |
| data1[i + 2 * PacketSize] = Scalar(0) - numext::abs(internal::random<Scalar>()); |
| } |
| if (!std::is_same<Scalar, bool>::value && NumTraits<Scalar>::IsSigned) { |
| CHECK_CWISE3_IF(true, REF_MSUB, internal::pmsub); |
| CHECK_CWISE3_IF(true, REF_NMADD, internal::pnmadd); |
| } |
| } |
| |
| // Notice that this definition works for complex types as well. |
| // c++11 has std::log2 for real, but not for complex types. |
| template <typename Scalar> |
| Scalar log2(Scalar x) { |
| return Scalar(EIGEN_LOG2E) * std::log(x); |
| } |
| |
| // Create a functor out of a function so it can be passed (with overloads) |
| // to another function as an input argument. |
| #define CREATE_FUNCTOR(Name, Func) \ |
| struct Name { \ |
| template <typename T> \ |
| T operator()(const T& val) const { \ |
| return Func(val); \ |
| } \ |
| } |
| |
| CREATE_FUNCTOR(psqrt_functor, internal::psqrt); |
| CREATE_FUNCTOR(prsqrt_functor, internal::prsqrt); |
| |
| // TODO(rmlarsen): Run this test for more functions. |
| template <bool Cond, typename Scalar, typename Packet, typename RefFunctorT, typename FunctorT> |
| void packetmath_test_IEEE_corner_cases(const RefFunctorT& ref_fun, const FunctorT& fun) { |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| const Scalar norm_min = (std::numeric_limits<Scalar>::min)(); |
| const Scalar norm_max = (std::numeric_limits<Scalar>::max)(); |
| |
| constexpr int size = PacketSize * 2; |
| EIGEN_ALIGN_MAX Scalar data1[size]; |
| EIGEN_ALIGN_MAX Scalar data2[size]; |
| EIGEN_ALIGN_MAX Scalar ref[size]; |
| for (int i = 0; i < size; ++i) { |
| data1[i] = data2[i] = ref[i] = Scalar(0); |
| } |
| |
| // Test for subnormals. |
| if (Cond && std::numeric_limits<Scalar>::has_denorm == std::denorm_present && !EIGEN_ARCH_ARM) { |
| for (int scale = 1; scale < 5; ++scale) { |
| // When EIGEN_FAST_MATH is 1 we relax the conditions slightly, and allow the function |
| // to return the same value for subnormals as the reference would return for zero with |
| // the same sign as the input. |
| #if EIGEN_FAST_MATH |
| data1[0] = Scalar(scale) * std::numeric_limits<Scalar>::denorm_min(); |
| data1[1] = -data1[0]; |
| test::packet_helper<Cond, Packet> h; |
| h.store(data2, fun(h.load(data1))); |
| for (int i = 0; i < PacketSize; ++i) { |
| const Scalar ref_zero = ref_fun(data1[i] < 0 ? -Scalar(0) : Scalar(0)); |
| const Scalar ref_val = ref_fun(data1[i]); |
| VERIFY(((std::isnan)(data2[i]) && (std::isnan)(ref_val)) || data2[i] == ref_zero || |
| verifyIsApprox(data2[i], ref_val)); |
| } |
| #else |
| CHECK_CWISE1_IF(Cond, ref_fun, fun); |
| #endif |
| } |
| } |
| |
| // Test for smallest normalized floats. |
| data1[0] = norm_min; |
| data1[1] = -data1[0]; |
| CHECK_CWISE1_IF(Cond, ref_fun, fun); |
| |
| // Test for largest floats. |
| data1[0] = norm_max; |
| data1[1] = -data1[0]; |
| CHECK_CWISE1_IF(Cond, ref_fun, fun); |
| |
| // Test for zeros. |
| data1[0] = Scalar(0.0); |
| data1[1] = -data1[0]; |
| CHECK_CWISE1_IF(Cond, ref_fun, fun); |
| |
| // Test for infinities. |
| data1[0] = NumTraits<Scalar>::infinity(); |
| data1[1] = -data1[0]; |
| CHECK_CWISE1_IF(Cond, ref_fun, fun); |
| |
| // Test for quiet NaNs. |
| data1[0] = std::numeric_limits<Scalar>::quiet_NaN(); |
| data1[1] = -std::numeric_limits<Scalar>::quiet_NaN(); |
| CHECK_CWISE1_IF(Cond, ref_fun, fun); |
| } |
| |
| template <typename Scalar, typename Packet> |
| void packetmath_real() { |
| typedef internal::packet_traits<Scalar> PacketTraits; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| const int size = PacketSize * 4; |
| EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4] = {}; |
| EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4] = {}; |
| EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4] = {}; |
| |
| // Negate with -0. |
| if (PacketTraits::HasNegate) { |
| test::packet_helper<PacketTraits::HasNegate, Packet> h; |
| data1[0] = Scalar{-0}; |
| h.store(data2, internal::pnegate(h.load(data1))); |
| typedef typename internal::make_unsigned<typename internal::make_integer<Scalar>::type>::type Bits; |
| Bits bits = numext::bit_cast<Bits>(data2[0]); |
| VERIFY_IS_EQUAL(bits, static_cast<Bits>(Bits(1) << (sizeof(Scalar) * CHAR_BIT - 1))); |
| } |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6))); |
| data2[i] = Scalar(internal::random<double>(0, 1) * std::pow(10., internal::random<double>(-6, 6))); |
| } |
| |
| if (internal::random<float>(0, 1) < 0.1f) data1[internal::random<int>(0, PacketSize)] = Scalar(0); |
| |
| CHECK_CWISE1_IF(PacketTraits::HasLog, std::log, internal::plog); |
| CHECK_CWISE1_IF(PacketTraits::HasLog, log2, internal::plog2); |
| CHECK_CWISE1_IF(PacketTraits::HasRsqrt, numext::rsqrt, internal::prsqrt); |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3))); |
| data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-3, 3))); |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasSin, std::sin, internal::psin); |
| CHECK_CWISE1_IF(PacketTraits::HasCos, std::cos, internal::pcos); |
| CHECK_CWISE1_IF(PacketTraits::HasTan, std::tan, internal::ptan); |
| |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround); |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::ceil, internal::pceil); |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::floor, internal::pfloor); |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::rint, internal::print); |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::trunc, internal::ptrunc); |
| CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign); |
| |
| packetmath_boolean_mask_ops_real<Scalar, Packet>(); |
| |
| // Rounding edge cases. |
| if (PacketTraits::HasRound) { |
| typedef typename internal::make_integer<Scalar>::type IntType; |
| // Start with values that cannot fit inside an integer, work down to less than one. |
| Scalar val = |
| numext::mini(Scalar(2) * static_cast<Scalar>(NumTraits<IntType>::highest()), NumTraits<Scalar>::highest()); |
| std::vector<Scalar> values; |
| while (val > Scalar(0.25)) { |
| // Cover both even and odd, positive and negative cases. |
| values.push_back(val); |
| values.push_back(val + Scalar(0.3)); |
| values.push_back(val + Scalar(0.5)); |
| values.push_back(val + Scalar(0.8)); |
| values.push_back(val + Scalar(1)); |
| values.push_back(val + Scalar(1.3)); |
| values.push_back(val + Scalar(1.5)); |
| values.push_back(val + Scalar(1.8)); |
| values.push_back(-val); |
| values.push_back(-val - Scalar(0.3)); |
| values.push_back(-val - Scalar(0.5)); |
| values.push_back(-val - Scalar(0.8)); |
| values.push_back(-val - Scalar(1)); |
| values.push_back(-val - Scalar(1.3)); |
| values.push_back(-val - Scalar(1.5)); |
| values.push_back(-val - Scalar(1.8)); |
| values.push_back(Scalar(-1.5) + val); // Bug 1785. |
| val = val / Scalar(2); |
| } |
| values.push_back(NumTraits<Scalar>::infinity()); |
| values.push_back(-NumTraits<Scalar>::infinity()); |
| values.push_back(NumTraits<Scalar>::quiet_NaN()); |
| |
| for (size_t k = 0; k < values.size(); ++k) { |
| data1[0] = values[k]; |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::round, internal::pround); |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::ceil, internal::pceil); |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::floor, internal::pfloor); |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::rint, internal::print); |
| CHECK_CWISE1_EXACT_IF(PacketTraits::HasRound, numext::trunc, internal::ptrunc); |
| } |
| } |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<double>(-1, 1)); |
| data2[i] = Scalar(internal::random<double>(-1, 1)); |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasASin, std::asin, internal::pasin); |
| CHECK_CWISE1_IF(PacketTraits::HasACos, std::acos, internal::pacos); |
| CHECK_CWISE1_IF(PacketTraits::HasATan, std::atan, internal::patan); |
| CHECK_CWISE1_IF(PacketTraits::HasATanh, std::atanh, internal::patanh); |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<double>(-87, 88)); |
| data2[i] = Scalar(internal::random<double>(-87, 88)); |
| data1[0] = -NumTraits<Scalar>::infinity(); |
| } |
| CHECK_CWISE1_IF(PacketTraits::HasExp, std::exp, internal::pexp); |
| |
| CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); |
| if (PacketTraits::HasExp) { |
| // Check denormals: |
| #if !EIGEN_ARCH_ARM |
| for (int j = 0; j < 3; ++j) { |
| data1[0] = Scalar(std::ldexp(1, NumTraits<Scalar>::min_exponent() - j)); |
| CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); |
| data1[0] = -data1[0]; |
| CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); |
| } |
| #endif |
| |
| // zero |
| data1[0] = Scalar(0); |
| CHECK_CWISE1_BYREF1_IF(PacketTraits::HasExp, REF_FREXP, internal::pfrexp); |
| |
| // inf and NaN only compare output fraction, not exponent. |
| test::packet_helper<PacketTraits::HasExp, Packet> h; |
| Packet pout; |
| Scalar sout; |
| Scalar special[] = {NumTraits<Scalar>::infinity(), -NumTraits<Scalar>::infinity(), NumTraits<Scalar>::quiet_NaN()}; |
| for (int i = 0; i < 3; ++i) { |
| data1[0] = special[i]; |
| ref[0] = Scalar(REF_FREXP(data1[0], ref[PacketSize])); |
| h.store(data2, internal::pfrexp(h.load(data1), h.forward_reference(pout, sout))); |
| VERIFY(test::areApprox(ref, data2, 1) && "internal::pfrexp"); |
| } |
| } |
| |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = Scalar(internal::random<double>(-1, 1)); |
| data2[i] = Scalar(internal::random<double>(-1, 1)); |
| } |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i + PacketSize] = Scalar(internal::random<int>(-4, 4)); |
| data2[i + PacketSize] = Scalar(internal::random<double>(-4, 4)); |
| } |
| CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); |
| if (PacketTraits::HasExp) { |
| data1[0] = Scalar(-1); |
| // underflow to zero |
| data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent() - 55); |
| CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); |
| // overflow to inf |
| data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent() + 10); |
| CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); |
| // NaN stays NaN |
| data1[0] = NumTraits<Scalar>::quiet_NaN(); |
| CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); |
| VERIFY((numext::isnan)(data2[0])); |
| // inf stays inf |
| data1[0] = NumTraits<Scalar>::infinity(); |
| data1[PacketSize] = Scalar(NumTraits<Scalar>::min_exponent() - 10); |
| CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); |
| // zero stays zero |
| data1[0] = Scalar(0); |
| data1[PacketSize] = Scalar(NumTraits<Scalar>::max_exponent() + 10); |
| CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); |
| // Small number big exponent. |
| data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::min_exponent() - 1)); |
| data1[PacketSize] = Scalar(-NumTraits<Scalar>::min_exponent() + NumTraits<Scalar>::max_exponent()); |
| CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); |
| // Big number small exponent. |
| data1[0] = Scalar(std::ldexp(Scalar(1.0), NumTraits<Scalar>::max_exponent() - 1)); |
| data1[PacketSize] = Scalar(+NumTraits<Scalar>::min_exponent() - NumTraits<Scalar>::max_exponent()); |
| CHECK_CWISE2_IF(PacketTraits::HasExp, REF_LDEXP, internal::pldexp); |
| } |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6))); |
| data2[i] = Scalar(internal::random<double>(-1, 1) * std::pow(10., internal::random<double>(-6, 6))); |
| } |
| data1[0] = Scalar(1e-20); |
| CHECK_CWISE1_IF(PacketTraits::HasTanh, std::tanh, internal::ptanh); |
| if (PacketTraits::HasExp && PacketSize >= 2) { |
| const Scalar small = NumTraits<Scalar>::epsilon(); |
| data1[0] = NumTraits<Scalar>::quiet_NaN(); |
| data1[1] = small; |
| test::packet_helper<PacketTraits::HasExp, Packet> h; |
| h.store(data2, internal::pexp(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| // TODO(rmlarsen): Re-enable for bfloat16. |
| if (!internal::is_same<Scalar, bfloat16>::value) { |
| VERIFY_IS_APPROX(std::exp(small), data2[1]); |
| } |
| |
| data1[0] = -small; |
| data1[1] = Scalar(0); |
| h.store(data2, internal::pexp(h.load(data1))); |
| // TODO(rmlarsen): Re-enable for bfloat16. |
| if (!internal::is_same<Scalar, bfloat16>::value) { |
| VERIFY_IS_APPROX(std::exp(-small), data2[0]); |
| } |
| VERIFY_IS_EQUAL(std::exp(Scalar(0)), data2[1]); |
| |
| data1[0] = (std::numeric_limits<Scalar>::min)(); |
| data1[1] = -(std::numeric_limits<Scalar>::min)(); |
| h.store(data2, internal::pexp(h.load(data1))); |
| VERIFY_IS_APPROX(std::exp((std::numeric_limits<Scalar>::min)()), data2[0]); |
| VERIFY_IS_APPROX(std::exp(-(std::numeric_limits<Scalar>::min)()), data2[1]); |
| |
| data1[0] = std::numeric_limits<Scalar>::denorm_min(); |
| data1[1] = -std::numeric_limits<Scalar>::denorm_min(); |
| h.store(data2, internal::pexp(h.load(data1))); |
| VERIFY_IS_APPROX(std::exp(std::numeric_limits<Scalar>::denorm_min()), data2[0]); |
| VERIFY_IS_APPROX(std::exp(-std::numeric_limits<Scalar>::denorm_min()), data2[1]); |
| } |
| |
| if (PacketTraits::HasTanh) { |
| // NOTE this test migh fail with GCC prior to 6.3, see MathFunctionsImpl.h for details. |
| data1[0] = NumTraits<Scalar>::quiet_NaN(); |
| test::packet_helper<internal::packet_traits<Scalar>::HasTanh, Packet> h; |
| h.store(data2, internal::ptanh(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| } |
| |
| if (PacketTraits::HasExp) { |
| internal::scalar_logistic_op<Scalar> logistic; |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<double>(-20, 20)); |
| } |
| |
| test::packet_helper<PacketTraits::HasExp, Packet> h; |
| h.store(data2, logistic.packetOp(h.load(data1))); |
| for (int i = 0; i < PacketSize; ++i) { |
| VERIFY_IS_APPROX(data2[i], logistic(data1[i])); |
| } |
| } |
| |
| #if EIGEN_HAS_C99_MATH |
| data1[0] = NumTraits<Scalar>::infinity(); |
| data1[1] = Scalar(-1); |
| CHECK_CWISE1_IF(PacketTraits::HasLog1p, std::log1p, internal::plog1p); |
| data1[0] = NumTraits<Scalar>::infinity(); |
| data1[1] = -NumTraits<Scalar>::infinity(); |
| CHECK_CWISE1_IF(PacketTraits::HasExpm1, std::expm1, internal::pexpm1); |
| #endif |
| |
| if (PacketSize >= 2) { |
| data1[0] = NumTraits<Scalar>::quiet_NaN(); |
| data1[1] = NumTraits<Scalar>::epsilon(); |
| if (PacketTraits::HasLog) { |
| test::packet_helper<PacketTraits::HasLog, Packet> h; |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| // TODO(cantonios): Re-enable for bfloat16. |
| if (!internal::is_same<Scalar, bfloat16>::value) { |
| VERIFY_IS_APPROX(std::log(data1[1]), data2[1]); |
| } |
| |
| data1[0] = -NumTraits<Scalar>::epsilon(); |
| data1[1] = Scalar(0); |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY_IS_EQUAL(std::log(Scalar(0)), data2[1]); |
| |
| data1[0] = (std::numeric_limits<Scalar>::min)(); |
| data1[1] = -(std::numeric_limits<Scalar>::min)(); |
| h.store(data2, internal::plog(h.load(data1))); |
| // TODO(cantonios): Re-enable for bfloat16. |
| if (!internal::is_same<Scalar, bfloat16>::value) { |
| VERIFY_IS_APPROX(std::log((std::numeric_limits<Scalar>::min)()), data2[0]); |
| } |
| VERIFY((numext::isnan)(data2[1])); |
| |
| // Note: 32-bit arm always flushes denorms to zero. |
| #if !EIGEN_ARCH_ARM |
| if (std::numeric_limits<Scalar>::has_denorm == std::denorm_present) { |
| data1[0] = std::numeric_limits<Scalar>::denorm_min(); |
| data1[1] = -std::numeric_limits<Scalar>::denorm_min(); |
| h.store(data2, internal::plog(h.load(data1))); |
| // TODO(rmlarsen): Re-enable for bfloat16. |
| if (!internal::is_same<Scalar, bfloat16>::value) { |
| VERIFY_IS_APPROX(std::log(std::numeric_limits<Scalar>::denorm_min()), data2[0]); |
| } |
| VERIFY((numext::isnan)(data2[1])); |
| } |
| #endif |
| |
| data1[0] = Scalar(-1.0f); |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| |
| data1[0] = NumTraits<Scalar>::infinity(); |
| h.store(data2, internal::plog(h.load(data1))); |
| VERIFY((numext::isinf)(data2[0])); |
| } |
| if (PacketTraits::HasLog1p) { |
| test::packet_helper<PacketTraits::HasLog1p, Packet> h; |
| data1[0] = Scalar(-2); |
| data1[1] = -NumTraits<Scalar>::infinity(); |
| h.store(data2, internal::plog1p(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY((numext::isnan)(data2[1])); |
| } |
| |
| packetmath_test_IEEE_corner_cases<PacketTraits::HasSqrt, Scalar, Packet>(numext::sqrt<Scalar>, psqrt_functor()); |
| packetmath_test_IEEE_corner_cases<PacketTraits::HasRsqrt, Scalar, Packet>(numext::rsqrt<Scalar>, prsqrt_functor()); |
| |
| // TODO(rmlarsen): Re-enable for half and bfloat16. |
| if (PacketTraits::HasCos && !internal::is_same<Scalar, half>::value && |
| !internal::is_same<Scalar, bfloat16>::value) { |
| test::packet_helper<PacketTraits::HasCos, Packet> h; |
| for (Scalar k = Scalar(1); k < Scalar(10000) / NumTraits<Scalar>::epsilon(); k *= Scalar(2)) { |
| for (int k1 = 0; k1 <= 1; ++k1) { |
| data1[0] = Scalar((2 * double(k) + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2)); |
| data1[1] = Scalar((2 * double(k) + 2 + k1) * double(EIGEN_PI) / 2 * internal::random<double>(0.8, 1.2)); |
| h.store(data2, internal::pcos(h.load(data1))); |
| h.store(data2 + PacketSize, internal::psin(h.load(data1))); |
| VERIFY(data2[0] <= Scalar(1.) && data2[0] >= Scalar(-1.)); |
| VERIFY(data2[1] <= Scalar(1.) && data2[1] >= Scalar(-1.)); |
| VERIFY(data2[PacketSize + 0] <= Scalar(1.) && data2[PacketSize + 0] >= Scalar(-1.)); |
| VERIFY(data2[PacketSize + 1] <= Scalar(1.) && data2[PacketSize + 1] >= Scalar(-1.)); |
| |
| VERIFY_IS_APPROX(data2[0], std::cos(data1[0])); |
| VERIFY_IS_APPROX(data2[1], std::cos(data1[1])); |
| VERIFY_IS_APPROX(data2[PacketSize + 0], std::sin(data1[0])); |
| VERIFY_IS_APPROX(data2[PacketSize + 1], std::sin(data1[1])); |
| |
| VERIFY_IS_APPROX(numext::abs2(data2[0]) + numext::abs2(data2[PacketSize + 0]), Scalar(1)); |
| VERIFY_IS_APPROX(numext::abs2(data2[1]) + numext::abs2(data2[PacketSize + 1]), Scalar(1)); |
| } |
| } |
| |
| data1[0] = NumTraits<Scalar>::infinity(); |
| data1[1] = -NumTraits<Scalar>::infinity(); |
| h.store(data2, internal::psin(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY((numext::isnan)(data2[1])); |
| |
| h.store(data2, internal::pcos(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| VERIFY((numext::isnan)(data2[1])); |
| |
| data1[0] = NumTraits<Scalar>::quiet_NaN(); |
| h.store(data2, internal::psin(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| h.store(data2, internal::pcos(h.load(data1))); |
| VERIFY((numext::isnan)(data2[0])); |
| |
| data1[0] = -Scalar(0.); |
| h.store(data2, internal::psin(h.load(data1))); |
| VERIFY(test::biteq(data2[0], data1[0])); |
| h.store(data2, internal::pcos(h.load(data1))); |
| VERIFY_IS_EQUAL(data2[0], Scalar(1)); |
| } |
| } |
| if (PacketTraits::HasReciprocal && PacketSize >= 2) { |
| test::packet_helper<PacketTraits::HasReciprocal, Packet> h; |
| const Scalar inf = NumTraits<Scalar>::infinity(); |
| const Scalar zero = Scalar(0); |
| data1[0] = zero; |
| data1[1] = -zero; |
| h.store(data2, internal::preciprocal(h.load(data1))); |
| VERIFY_IS_EQUAL(data2[0], inf); |
| VERIFY_IS_EQUAL(data2[1], -inf); |
| |
| data1[0] = inf; |
| data1[1] = -inf; |
| h.store(data2, internal::preciprocal(h.load(data1))); |
| VERIFY_IS_EQUAL(data2[0], zero); |
| VERIFY_IS_EQUAL(data2[1], -zero); |
| } |
| } |
| |
| #define CAST_CHECK_CWISE1_IF(COND, REFOP, POP, SCALAR, REFTYPE) \ |
| if (COND) { \ |
| test::packet_helper<COND, Packet> h; \ |
| for (int i = 0; i < PacketSize; ++i) ref[i] = SCALAR(REFOP(static_cast<REFTYPE>(data1[i]))); \ |
| h.store(data2, POP(h.load(data1))); \ |
| VERIFY(test::areApprox(ref, data2, PacketSize) && #POP); \ |
| } |
| |
| template <typename Scalar> |
| Scalar propagate_nan_max(const Scalar& a, const Scalar& b) { |
| if ((numext::isnan)(a)) return a; |
| if ((numext::isnan)(b)) return b; |
| return (numext::maxi)(a, b); |
| } |
| |
| template <typename Scalar> |
| Scalar propagate_nan_min(const Scalar& a, const Scalar& b) { |
| if ((numext::isnan)(a)) return a; |
| if ((numext::isnan)(b)) return b; |
| return (numext::mini)(a, b); |
| } |
| |
| template <typename Scalar> |
| Scalar propagate_number_max(const Scalar& a, const Scalar& b) { |
| if ((numext::isnan)(a)) return b; |
| if ((numext::isnan)(b)) return a; |
| return (numext::maxi)(a, b); |
| } |
| |
| template <typename Scalar> |
| Scalar propagate_number_min(const Scalar& a, const Scalar& b) { |
| if ((numext::isnan)(a)) return b; |
| if ((numext::isnan)(b)) return a; |
| return (numext::mini)(a, b); |
| } |
| |
| template <typename Scalar, typename Packet> |
| void packetmath_notcomplex() { |
| typedef internal::packet_traits<Scalar> PacketTraits; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4]; |
| EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4]; |
| EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4]; |
| |
| Array<Scalar, Dynamic, 1>::Map(data1, PacketSize * 4).setRandom(); |
| |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMin); |
| VERIFY((!PacketTraits::Vectorizable) || PacketTraits::HasMax); |
| |
| CHECK_CWISE2_IF(PacketTraits::HasMin, (std::min), internal::pmin); |
| CHECK_CWISE2_IF(PacketTraits::HasMax, (std::max), internal::pmax); |
| |
| CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, internal::pmin<PropagateNumbers>); |
| CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>); |
| CHECK_CWISE1(numext::abs, internal::pabs); |
| // Vectorized versions may give a different result in the case of signed int overflow, |
| // which is undefined behavior (e.g. NEON). |
| // Also note that unsigned integers with size < sizeof(int) may be implicitly converted to a signed |
| // int, which can also trigger UB. |
| if (Eigen::NumTraits<Scalar>::IsInteger) { |
| for (int i = 0; i < 2 * PacketSize; ++i) { |
| data1[i] = data1[i] / Scalar(2); |
| } |
| } |
| CHECK_CWISE2_IF(PacketTraits::HasAbsDiff, REF_ABS_DIFF, internal::pabsdiff); |
| |
| ref[0] = data1[0]; |
| for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin(ref[0], data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min"); |
| ref[0] = data1[0]; |
| for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax(ref[0], data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max"); |
| |
| for (int i = 0; i < PacketSize; ++i) ref[i] = data1[0] + Scalar(i); |
| internal::pstore(data2, internal::plset<Packet>(data1[0])); |
| VERIFY(test::areApprox(ref, data2, PacketSize) && "internal::plset"); |
| |
| { |
| unsigned char* data1_bits = reinterpret_cast<unsigned char*>(data1); |
| // predux_all - not needed yet |
| // for (unsigned int i=0; i<PacketSize*sizeof(Scalar); ++i) data1_bits[i] = 0xff; |
| // VERIFY(internal::predux_all(internal::pload<Packet>(data1)) && "internal::predux_all(1111)"); |
| // for(int k=0; k<PacketSize; ++k) |
| // { |
| // for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0x0; |
| // VERIFY( (!internal::predux_all(internal::pload<Packet>(data1))) && "internal::predux_all(0101)"); |
| // for (unsigned int i=0; i<sizeof(Scalar); ++i) data1_bits[k*sizeof(Scalar)+i] = 0xff; |
| // } |
| |
| // predux_any |
| for (unsigned int i = 0; i < PacketSize * sizeof(Scalar); ++i) data1_bits[i] = 0x0; |
| VERIFY((!internal::predux_any(internal::pload<Packet>(data1))) && "internal::predux_any(0000)"); |
| for (int k = 0; k < PacketSize; ++k) { |
| for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0xff; |
| VERIFY(internal::predux_any(internal::pload<Packet>(data1)) && "internal::predux_any(0101)"); |
| for (unsigned int i = 0; i < sizeof(Scalar); ++i) data1_bits[k * sizeof(Scalar) + i] = 0x00; |
| } |
| } |
| |
| // Test NaN propagation. |
| if (!NumTraits<Scalar>::IsInteger) { |
| // Test reductions with no NaNs. |
| ref[0] = data1[0]; |
| for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNumbers>(ref[0], data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1))) && |
| "internal::predux_min<PropagateNumbers>"); |
| ref[0] = data1[0]; |
| for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmin<PropagateNaN>(ref[0], data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1))) && |
| "internal::predux_min<PropagateNaN>"); |
| ref[0] = data1[0]; |
| for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNumbers>(ref[0], data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1))) && |
| "internal::predux_max<PropagateNumbers>"); |
| ref[0] = data1[0]; |
| for (int i = 0; i < PacketSize; ++i) ref[0] = internal::pmax<PropagateNaN>(ref[0], data1[i]); |
| VERIFY(internal::isApprox(ref[0], internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1))) && |
| "internal::predux_max<PropagateNumbers>"); |
| // A single NaN. |
| const size_t index = std::numeric_limits<size_t>::quiet_NaN() % PacketSize; |
| data1[index] = NumTraits<Scalar>::quiet_NaN(); |
| VERIFY(PacketSize == 1 || !(numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1)))); |
| VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1)))); |
| VERIFY(PacketSize == 1 || !(numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1)))); |
| VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1)))); |
| // All NaNs. |
| for (int i = 0; i < 4 * PacketSize; ++i) data1[i] = NumTraits<Scalar>::quiet_NaN(); |
| VERIFY((numext::isnan)(internal::predux_min<PropagateNumbers>(internal::pload<Packet>(data1)))); |
| VERIFY((numext::isnan)(internal::predux_min<PropagateNaN>(internal::pload<Packet>(data1)))); |
| VERIFY((numext::isnan)(internal::predux_max<PropagateNumbers>(internal::pload<Packet>(data1)))); |
| VERIFY((numext::isnan)(internal::predux_max<PropagateNaN>(internal::pload<Packet>(data1)))); |
| |
| // Test NaN propagation for coefficient-wise min and max. |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0); |
| data1[i + PacketSize] = internal::random<bool>() ? NumTraits<Scalar>::quiet_NaN() : Scalar(0); |
| } |
| // Note: NaN propagation is implementation defined for pmin/pmax, so we do not test it here. |
| CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_number_min, (internal::pmin<PropagateNumbers>)); |
| CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_number_max, internal::pmax<PropagateNumbers>); |
| CHECK_CWISE2_IF(PacketTraits::HasMin, propagate_nan_min, (internal::pmin<PropagateNaN>)); |
| CHECK_CWISE2_IF(PacketTraits::HasMax, propagate_nan_max, internal::pmax<PropagateNaN>); |
| } |
| |
| packetmath_boolean_mask_ops_notcomplex_test<Scalar, Packet>::run(); |
| } |
| |
| template <typename Scalar, typename Packet, bool ConjLhs, bool ConjRhs> |
| void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) { |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| internal::conj_if<ConjLhs> cj0; |
| internal::conj_if<ConjRhs> cj1; |
| internal::conj_helper<Scalar, Scalar, ConjLhs, ConjRhs> cj; |
| internal::conj_helper<Packet, Packet, ConjLhs, ConjRhs> pcj; |
| |
| for (int i = 0; i < PacketSize; ++i) { |
| ref[i] = cj0(data1[i]) * cj1(data2[i]); |
| VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i], data2[i])) && "conj_helper pmul"); |
| } |
| internal::pstore(pval, pcj.pmul(internal::pload<Packet>(data1), internal::pload<Packet>(data2))); |
| VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmul"); |
| |
| for (int i = 0; i < PacketSize; ++i) { |
| Scalar tmp = ref[i]; |
| ref[i] += cj0(data1[i]) * cj1(data2[i]); |
| VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i], data2[i], tmp)) && "conj_helper pmadd"); |
| } |
| internal::pstore( |
| pval, pcj.pmadd(internal::pload<Packet>(data1), internal::pload<Packet>(data2), internal::pload<Packet>(pval))); |
| VERIFY(test::areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); |
| } |
| |
| template <typename Scalar, typename Packet, bool HasExp = internal::packet_traits<Scalar>::HasExp> |
| struct exp_complex_test_impl { |
| typedef typename Scalar::value_type RealScalar; |
| |
| static Scalar pexp1(const Scalar& x) { |
| Packet px = internal::pset1<Packet>(x); |
| Packet py = internal::pexp(px); |
| return internal::pfirst(py); |
| } |
| |
| static Scalar cis(const RealScalar& x) { return Scalar(numext::cos(x), numext::sin(x)); } |
| |
| // Verify equality with signed zero. |
| static bool is_exactly_equal(RealScalar a, RealScalar b) { |
| // NaNs are always unsigned, and always compare not equal directly. |
| if ((numext::isnan)(a)) { |
| return (numext::isnan)(b); |
| } |
| |
| RealScalar zero(0); |
| #ifdef EIGEN_ARCH_ARM |
| // ARM automatically flushes denormals to zero. |
| // Preserve sign by multiplying by +0. |
| if (numext::abs(a) < (std::numeric_limits<RealScalar>::min)()) { |
| a = a * zero; |
| } |
| if (numext::abs(b) < (std::numeric_limits<RealScalar>::min)()) { |
| b = b * zero; |
| } |
| #endif |
| |
| // Signed zero. |
| if (a == zero) { |
| // Signs are either 0 or NaN, so verify that their comparisons to zero are equal. |
| return (a == b) && ((numext::signbit(a) == zero) == (numext::signbit(b) == zero)); |
| } |
| // Allow _some_ tolerance. |
| return verifyIsApprox(a, b); |
| } |
| |
| // Verify equality with signed zero. |
| static bool is_exactly_equal(const Scalar& a, const Scalar& b) { |
| bool result = is_exactly_equal(numext::real_ref(a), numext::real_ref(b)) && |
| is_exactly_equal(numext::imag_ref(a), numext::imag_ref(b)); |
| if (!result) { |
| std::cout << a << " != " << b << std::endl; |
| } |
| return result; |
| } |
| |
| static bool is_sign_exp_unspecified(const Scalar& z) { |
| const RealScalar inf = std::numeric_limits<RealScalar>::infinity(); |
| // If z is (-∞,±∞), the result is (±0,±0) (signs are unspecified) |
| if (numext::real_ref(z) == -inf && (numext::isinf)(numext::imag_ref(z))) { |
| return true; |
| } |
| // If z is (+∞,±∞), the result is (±∞,NaN) and FE_INVALID is raised (the sign of the real part is unspecified) |
| if (numext::real_ref(z) == +inf && (numext::isinf)(numext::imag_ref(z))) { |
| return true; |
| } |
| // If z is (-∞,NaN), the result is (±0,±0) (signs are unspecified) |
| if (numext::real_ref(z) == -inf && (numext::isnan)(numext::imag_ref(z))) { |
| return true; |
| } |
| // If z is (+∞,NaN), the result is (±∞,NaN) (the sign of the real part is unspecified) |
| if (numext::real_ref(z) == +inf && (numext::isnan)(numext::imag_ref(z))) { |
| return true; |
| } |
| return false; |
| } |
| |
| static void run(Scalar* data1, Scalar* data2, Scalar* ref, int size) { |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>()); |
| } |
| CHECK_CWISE1_N(std::exp, internal::pexp, size); |
| |
| // Test all corner cases (and more). |
| const RealScalar edges[] = {RealScalar(0), |
| RealScalar(1), |
| RealScalar(2), |
| RealScalar(EIGEN_PI / 2), |
| RealScalar(EIGEN_PI), |
| RealScalar(3 * EIGEN_PI / 2), |
| RealScalar(2 * EIGEN_PI), |
| numext::log(NumTraits<RealScalar>::highest()) - 1, |
| NumTraits<RealScalar>::highest(), |
| std::numeric_limits<RealScalar>::infinity(), |
| std::numeric_limits<RealScalar>::quiet_NaN(), |
| -RealScalar(0), |
| -RealScalar(1), |
| -RealScalar(2), |
| -RealScalar(EIGEN_PI / 2), |
| -RealScalar(EIGEN_PI), |
| -RealScalar(3 * EIGEN_PI / 2), |
| -RealScalar(2 * EIGEN_PI), |
| -numext::log(NumTraits<RealScalar>::highest()) + 1, |
| -NumTraits<RealScalar>::highest(), |
| -std::numeric_limits<RealScalar>::infinity(), |
| -std::numeric_limits<RealScalar>::quiet_NaN()}; |
| |
| for (RealScalar x : edges) { |
| for (RealScalar y : edges) { |
| Scalar z = Scalar(x, y); |
| Scalar w = pexp1(z); |
| if (is_sign_exp_unspecified(z)) { |
| Scalar abs_w = Scalar(numext::abs(numext::real_ref(w)), numext::abs(numext::imag_ref(w))); |
| Scalar expected = numext::exp(z); |
| Scalar abs_expected = |
| Scalar(numext::abs(numext::real_ref(expected)), numext::abs(numext::imag_ref(expected))); |
| VERIFY(is_exactly_equal(abs_w, abs_expected)); |
| } else { |
| VERIFY(is_exactly_equal(w, numext::exp(z))); |
| } |
| } |
| } |
| } |
| }; |
| |
| template <typename Scalar, typename Packet> |
| struct exp_complex_test_impl<Scalar, Packet, false> { |
| typedef typename Scalar::value_type RealScalar; |
| static void run(Scalar*, Scalar*, Scalar*, int){}; |
| }; |
| |
| template <typename Scalar, typename Packet> |
| void exp_complex_test(Scalar* data1, Scalar* data2, Scalar* ref, int size) { |
| exp_complex_test_impl<Scalar, Packet>::run(data1, data2, ref, size); |
| } |
| |
| template <typename Scalar, typename Packet> |
| void packetmath_complex() { |
| typedef internal::packet_traits<Scalar> PacketTraits; |
| typedef typename Scalar::value_type RealScalar; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| |
| const int size = PacketSize * 4; |
| EIGEN_ALIGN_MAX Scalar data1[PacketSize * 4]; |
| EIGEN_ALIGN_MAX Scalar data2[PacketSize * 4]; |
| EIGEN_ALIGN_MAX Scalar ref[PacketSize * 4]; |
| EIGEN_ALIGN_MAX Scalar pval[PacketSize * 4]; |
| EIGEN_ALIGN_MAX RealScalar realdata[PacketSize * 4]; |
| EIGEN_ALIGN_MAX RealScalar realref[PacketSize * 4]; |
| |
| for (int i = 0; i < size; ++i) { |
| data1[i] = internal::random<Scalar>() * Scalar(1e2); |
| data2[i] = internal::random<Scalar>() * Scalar(1e2); |
| } |
| |
| test_conj_helper<Scalar, Packet, false, false>(data1, data2, ref, pval); |
| test_conj_helper<Scalar, Packet, false, true>(data1, data2, ref, pval); |
| test_conj_helper<Scalar, Packet, true, false>(data1, data2, ref, pval); |
| test_conj_helper<Scalar, Packet, true, true>(data1, data2, ref, pval); |
| |
| // Test pcplxflip. |
| { |
| for (int i = 0; i < PacketSize; ++i) ref[i] = Scalar(std::imag(data1[i]), std::real(data1[i])); |
| internal::pstore(pval, internal::pcplxflip(internal::pload<Packet>(data1))); |
| VERIFY(test::areApprox(ref, pval, PacketSize) && "pcplxflip"); |
| } |
| |
| if (PacketTraits::HasSqrt) { |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>()); |
| } |
| CHECK_CWISE1_N(numext::sqrt, internal::psqrt, size); |
| CHECK_CWISE1_IF(PacketTraits::HasSign, numext::sign, internal::psign); |
| |
| // Test misc. corner cases. |
| const RealScalar zero = RealScalar(0); |
| const RealScalar one = RealScalar(1); |
| const RealScalar inf = std::numeric_limits<RealScalar>::infinity(); |
| const RealScalar nan = std::numeric_limits<RealScalar>::quiet_NaN(); |
| data1[0] = Scalar(zero, zero); |
| data1[1] = Scalar(-zero, zero); |
| data1[2] = Scalar(one, zero); |
| data1[3] = Scalar(zero, one); |
| CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); |
| data1[0] = Scalar(-one, zero); |
| data1[1] = Scalar(zero, -one); |
| data1[2] = Scalar(one, one); |
| data1[3] = Scalar(-one, -one); |
| CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); |
| data1[0] = Scalar(inf, zero); |
| data1[1] = Scalar(zero, inf); |
| data1[2] = Scalar(-inf, zero); |
| data1[3] = Scalar(zero, -inf); |
| CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); |
| data1[0] = Scalar(inf, inf); |
| data1[1] = Scalar(-inf, inf); |
| data1[2] = Scalar(inf, -inf); |
| data1[3] = Scalar(-inf, -inf); |
| CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); |
| data1[0] = Scalar(nan, zero); |
| data1[1] = Scalar(zero, nan); |
| data1[2] = Scalar(nan, one); |
| data1[3] = Scalar(one, nan); |
| CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); |
| data1[0] = Scalar(nan, nan); |
| data1[1] = Scalar(inf, nan); |
| data1[2] = Scalar(nan, inf); |
| data1[3] = Scalar(-inf, nan); |
| CHECK_CWISE1_N(numext::sqrt, internal::psqrt, 4); |
| } |
| if (PacketTraits::HasLog) { |
| for (int i = 0; i < size; ++i) { |
| data1[i] = Scalar(internal::random<RealScalar>(), internal::random<RealScalar>()); |
| } |
| CHECK_CWISE1_N(std::log, internal::plog, size); |
| |
| // Test misc. corner cases. |
| const RealScalar zero = RealScalar(0); |
| const RealScalar one = RealScalar(1); |
| const RealScalar inf = std::numeric_limits<RealScalar>::infinity(); |
| const RealScalar nan = std::numeric_limits<RealScalar>::quiet_NaN(); |
| for (RealScalar x : {zero, one, inf}) { |
| for (RealScalar y : {zero, one, inf}) { |
| data1[0] = Scalar(x, y); |
| data1[1] = Scalar(-x, y); |
| data1[2] = Scalar(x, -y); |
| data1[3] = Scalar(-x, -y); |
| CHECK_CWISE1_IM1ULP_N(std::log, internal::plog, 4); |
| } |
| } |
| // Set reference results to nan. |
| // Some architectures don't handle IEEE edge cases correctly |
| ref[0] = Scalar(nan, nan); |
| ref[1] = Scalar(nan, nan); |
| ref[2] = Scalar(nan, nan); |
| ref[3] = Scalar(nan, nan); |
| for (RealScalar x : {zero, one}) { |
| data1[0] = Scalar(x, nan); |
| data1[1] = Scalar(-x, nan); |
| data1[2] = Scalar(nan, x); |
| data1[3] = Scalar(nan, -x); |
| for (int j = 0; j < size; j += PacketSize) |
| internal::pstore(data2 + j, internal::plog(internal::pload<Packet>(data1 + j))); |
| VERIFY(test::areApprox(ref, data2, 4)); |
| } |
| data1[0] = Scalar(inf, nan); |
| data1[1] = Scalar(-inf, nan); |
| data1[2] = Scalar(nan, inf); |
| data1[3] = Scalar(nan, -inf); |
| CHECK_CWISE1_IM1ULP_N(numext::log, internal::plog, 4); |
| } |
| exp_complex_test<Scalar, Packet>(data1, data2, ref, size); |
| } |
| |
| template <typename Scalar, typename Packet> |
| void packetmath_scatter_gather() { |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| const int PacketSize = internal::unpacket_traits<Packet>::size; |
| EIGEN_ALIGN_MAX Scalar data1[PacketSize]; |
| RealScalar refvalue = RealScalar(0); |
| for (int i = 0; i < PacketSize; ++i) { |
| data1[i] = internal::random<Scalar>() / RealScalar(PacketSize); |
| } |
| |
| int stride = internal::random<int>(1, 20); |
| |
| // Buffer of zeros. |
| EIGEN_ALIGN_MAX Scalar buffer[PacketSize * 20] = {}; |
| |
| Packet packet = internal::pload<Packet>(data1); |
| internal::pscatter<Scalar, Packet>(buffer, packet, stride); |
| |
| for (int i = 0; i < PacketSize * 20; ++i) { |
| if ((i % stride) == 0 && i < stride * PacketSize) { |
| VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter"); |
| } else { |
| VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter"); |
| } |
| } |
| |
| for (int i = 0; i < PacketSize * 7; ++i) { |
| buffer[i] = internal::random<Scalar>() / RealScalar(PacketSize); |
| } |
| packet = internal::pgather<Scalar, Packet>(buffer, 7); |
| internal::pstore(data1, packet); |
| for (int i = 0; i < PacketSize; ++i) { |
| VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather"); |
| } |
| |
| for (Index N = 0; N <= PacketSize; ++N) { |
| for (Index i = 0; i < N; ++i) { |
| data1[i] = internal::random<Scalar>() / RealScalar(PacketSize); |
| } |
| |
| for (Index i = 0; i < N * 20; ++i) { |
| buffer[i] = Scalar(0); |
| } |
| |
| packet = internal::pload_partial<Packet>(data1, N); |
| internal::pscatter_partial<Scalar, Packet>(buffer, packet, stride, N); |
| |
| for (Index i = 0; i < N * 20; ++i) { |
| if ((i % stride) == 0 && i < stride * N) { |
| VERIFY(test::isApproxAbs(buffer[i], data1[i / stride], refvalue) && "pscatter_partial"); |
| } else { |
| VERIFY(test::isApproxAbs(buffer[i], Scalar(0), refvalue) && "pscatter_partial"); |
| } |
| } |
| |
| for (Index i = 0; i < N * 7; ++i) { |
| buffer[i] = internal::random<Scalar>() / RealScalar(PacketSize); |
| } |
| packet = internal::pgather_partial<Scalar, Packet>(buffer, 7, N); |
| internal::pstore_partial(data1, packet, N); |
| for (Index i = 0; i < N; ++i) { |
| VERIFY(test::isApproxAbs(data1[i], buffer[i * 7], refvalue) && "pgather_partial"); |
| } |
| } |
| } |
| |
| namespace Eigen { |
| namespace test { |
| |
| template <typename Scalar, typename PacketType> |
| struct runall<Scalar, PacketType, false, false> { // i.e. float or double |
| static void run() { |
| packetmath<Scalar, PacketType>(); |
| packetmath_scatter_gather<Scalar, PacketType>(); |
| packetmath_notcomplex<Scalar, PacketType>(); |
| packetmath_real<Scalar, PacketType>(); |
| } |
| }; |
| |
| template <typename Scalar, typename PacketType> |
| struct runall<Scalar, PacketType, false, true> { // i.e. int |
| static void run() { |
| packetmath<Scalar, PacketType>(); |
| packetmath_scatter_gather<Scalar, PacketType>(); |
| packetmath_notcomplex<Scalar, PacketType>(); |
| } |
| }; |
| |
| template <typename Scalar, typename PacketType> |
| struct runall<Scalar, PacketType, true, false> { // i.e. complex |
| static void run() { |
| packetmath<Scalar, PacketType>(); |
| packetmath_scatter_gather<Scalar, PacketType>(); |
| packetmath_complex<Scalar, PacketType>(); |
| } |
| }; |
| |
| } // namespace test |
| } // namespace Eigen |
| |
| EIGEN_DECLARE_TEST(packetmath) { |
| g_first_pass = true; |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(test::runner<float>::run()); |
| CALL_SUBTEST_2(test::runner<double>::run()); |
| CALL_SUBTEST_3(test::runner<int8_t>::run()); |
| CALL_SUBTEST_4(test::runner<uint8_t>::run()); |
| CALL_SUBTEST_5(test::runner<int16_t>::run()); |
| CALL_SUBTEST_6(test::runner<uint16_t>::run()); |
| CALL_SUBTEST_7(test::runner<int32_t>::run()); |
| CALL_SUBTEST_8(test::runner<uint32_t>::run()); |
| CALL_SUBTEST_9(test::runner<int64_t>::run()); |
| CALL_SUBTEST_10(test::runner<uint64_t>::run()); |
| CALL_SUBTEST_11(test::runner<std::complex<float>>::run()); |
| CALL_SUBTEST_12(test::runner<std::complex<double>>::run()); |
| CALL_SUBTEST_13(test::runner<half>::run()); |
| CALL_SUBTEST_14((packetmath<bool, internal::packet_traits<bool>::type>())); |
| CALL_SUBTEST_15(test::runner<bfloat16>::run()); |
| g_first_pass = false; |
| } |
| } |