|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void product_extra(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, 1, Dynamic> RowVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::Flags & RowMajorBit> OtherMajorMatrixType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), | 
|  | mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows), | 
|  | square = MatrixType::Random(rows, rows), res = MatrixType::Random(rows, rows), | 
|  | square2 = MatrixType::Random(cols, cols), res2 = MatrixType::Random(cols, cols); | 
|  | RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); | 
|  | ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); | 
|  | OtherMajorMatrixType tm1 = m1; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(), s3 = internal::random<Scalar>(); | 
|  |  | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2, (numext::conj(s1) * m1.adjoint()).eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (-m1.adjoint() * s1) * (s3 * m2), (-m1.adjoint() * s1).eval() * (s3 * m2).eval()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2); | 
|  | VERIFY_IS_APPROX(m3.noalias() = (-m1 * s2) * s1 * m2.adjoint(), (-m1 * s2).eval() * (s1 * m2.adjoint()).eval()); | 
|  |  | 
|  | // a very tricky case where a scale factor has to be automatically conjugated: | 
|  | VERIFY_IS_APPROX(m1.adjoint() * (s1 * m2).conjugate(), (m1.adjoint()).eval() * ((s1 * m2).conjugate()).eval()); | 
|  |  | 
|  | // test all possible conjugate combinations for the four matrix-vector product cases: | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), (-m1.conjugate() * s2).eval() * (s1 * vc2).eval()); | 
|  | VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), (-m1 * s2).eval() * (s1 * vc2.conjugate()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), | 
|  | (-m1.conjugate() * s2).eval() * (s1 * vc2.conjugate()).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), | 
|  | (s1 * vc2.transpose()).eval() * (-m1.adjoint() * s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), | 
|  | (s1 * vc2.adjoint()).eval() * (-m1.transpose() * s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), | 
|  | (s1 * vc2.adjoint()).eval() * (-m1.adjoint() * s2).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), | 
|  | (-m1.adjoint() * s2).eval() * (s1 * v1.transpose()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.transpose() * s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.adjoint() * s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), (s1 * v1).eval() * (-m1.conjugate() * s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), (s1 * v1.conjugate()).eval() * (-m1 * s2).eval()); | 
|  | VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), | 
|  | (s1 * v1.conjugate()).eval() * (-m1.conjugate() * s2).eval()); | 
|  |  | 
|  | VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), | 
|  | (-m1.adjoint() * s2).eval() * (s1 * v1.adjoint()).eval()); | 
|  |  | 
|  | // test the vector-matrix product with non aligned starts | 
|  | Index i = internal::random<Index>(0, m1.rows() - 2); | 
|  | Index j = internal::random<Index>(0, m1.cols() - 2); | 
|  | Index r = internal::random<Index>(1, m1.rows() - i); | 
|  | Index c = internal::random<Index>(1, m1.cols() - j); | 
|  | Index i2 = internal::random<Index>(0, m1.rows() - 1); | 
|  | Index j2 = internal::random<Index>(0, m1.cols() - 1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0, j, m1.rows(), c), | 
|  | m1.col(j2).adjoint().eval() * m1.block(0, j, m1.rows(), c).eval()); | 
|  | VERIFY_IS_APPROX(m1.block(i, 0, r, m1.cols()) * m1.row(i2).adjoint(), | 
|  | m1.block(i, 0, r, m1.cols()).eval() * m1.row(i2).adjoint().eval()); | 
|  |  | 
|  | // test negative strides | 
|  | { | 
|  | Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map1(&m1(rows - 1, cols - 1), rows, cols, | 
|  | Stride<Dynamic, Dynamic>(-m1.outerStride(), -1)); | 
|  | Map<MatrixType, Unaligned, Stride<Dynamic, Dynamic> > map2(&m2(rows - 1, cols - 1), rows, cols, | 
|  | Stride<Dynamic, Dynamic>(-m2.outerStride(), -1)); | 
|  | Map<RowVectorType, Unaligned, InnerStride<-1> > mapv1(&v1(v1.size() - 1), v1.size(), InnerStride<-1>(-1)); | 
|  | Map<ColVectorType, Unaligned, InnerStride<-1> > mapvc2(&vc2(vc2.size() - 1), vc2.size(), InnerStride<-1>(-1)); | 
|  | VERIFY_IS_APPROX(MatrixType(map1), m1.reverse()); | 
|  | VERIFY_IS_APPROX(MatrixType(map2), m2.reverse()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = MatrixType(map1) * MatrixType(map2).adjoint(), | 
|  | m1.reverse() * m2.reverse().adjoint()); | 
|  | VERIFY_IS_APPROX(m3.noalias() = map1 * map2.adjoint(), m1.reverse() * m2.reverse().adjoint()); | 
|  | VERIFY_IS_APPROX(map1 * vc2, m1.reverse() * vc2); | 
|  | VERIFY_IS_APPROX(m1 * mapvc2, m1 * mapvc2); | 
|  | VERIFY_IS_APPROX(map1.adjoint() * v1.transpose(), m1.adjoint().reverse() * v1.transpose()); | 
|  | VERIFY_IS_APPROX(m1.adjoint() * mapv1.transpose(), m1.adjoint() * v1.reverse().transpose()); | 
|  | } | 
|  |  | 
|  | // regression test | 
|  | MatrixType tmp = m1 * m1.adjoint() * s1; | 
|  | VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1); | 
|  |  | 
|  | // regression test for bug 1343, assignment to arrays | 
|  | Array<Scalar, Dynamic, 1> a1 = m1 * vc2; | 
|  | VERIFY_IS_APPROX(a1.matrix(), m1 * vc2); | 
|  | Array<Scalar, Dynamic, 1> a2 = s1 * (m1 * vc2); | 
|  | VERIFY_IS_APPROX(a2.matrix(), s1 * m1 * vc2); | 
|  | Array<Scalar, 1, Dynamic> a3 = v1 * m1; | 
|  | VERIFY_IS_APPROX(a3.matrix(), v1 * m1); | 
|  | Array<Scalar, Dynamic, Dynamic> a4 = m1 * m2.adjoint(); | 
|  | VERIFY_IS_APPROX(a4.matrix(), m1 * m2.adjoint()); | 
|  | } | 
|  |  | 
|  | // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947 | 
|  | void mat_mat_scalar_scalar_product() { | 
|  | Eigen::Matrix2Xd dNdxy(2, 3); | 
|  | dNdxy << -0.5, 0.5, 0, -0.3, 0, 0.3; | 
|  | double det = 6.0, wt = 0.5; | 
|  | VERIFY_IS_APPROX(dNdxy.transpose() * dNdxy * det * wt, det * wt * dNdxy.transpose() * dNdxy); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void zero_sized_objects(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | const int PacketSize = internal::packet_traits<Scalar>::size; | 
|  | const int PacketSize1 = PacketSize > 1 ? PacketSize - 1 : 1; | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | { | 
|  | MatrixType res, a(rows, 0), b(0, cols); | 
|  | VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(rows, cols)); | 
|  | VERIFY_IS_APPROX((res = a * a.transpose()), MatrixType::Zero(rows, rows)); | 
|  | VERIFY_IS_APPROX((res = b.transpose() * b), MatrixType::Zero(cols, cols)); | 
|  | VERIFY_IS_APPROX((res = b.transpose() * a.transpose()), MatrixType::Zero(cols, rows)); | 
|  | } | 
|  |  | 
|  | { | 
|  | MatrixType res, a(rows, cols), b(cols, 0); | 
|  | res = a * b; | 
|  | VERIFY(res.rows() == rows && res.cols() == 0); | 
|  | b.resize(0, rows); | 
|  | res = b * a; | 
|  | VERIFY(res.rows() == 0 && res.cols() == cols); | 
|  | } | 
|  |  | 
|  | { | 
|  | Matrix<Scalar, PacketSize, 0> a; | 
|  | Matrix<Scalar, 0, 1> b; | 
|  | Matrix<Scalar, PacketSize, 1> res; | 
|  | VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize, 1)); | 
|  | VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize, 1)); | 
|  | } | 
|  |  | 
|  | { | 
|  | Matrix<Scalar, PacketSize1, 0> a; | 
|  | Matrix<Scalar, 0, 1> b; | 
|  | Matrix<Scalar, PacketSize1, 1> res; | 
|  | VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize1, 1)); | 
|  | VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize1, 1)); | 
|  | } | 
|  |  | 
|  | { | 
|  | Matrix<Scalar, PacketSize, Dynamic> a(PacketSize, 0); | 
|  | Matrix<Scalar, Dynamic, 1> b(0, 1); | 
|  | Matrix<Scalar, PacketSize, 1> res; | 
|  | VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize, 1)); | 
|  | VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize, 1)); | 
|  | } | 
|  |  | 
|  | { | 
|  | Matrix<Scalar, PacketSize1, Dynamic> a(PacketSize1, 0); | 
|  | Matrix<Scalar, Dynamic, 1> b(0, 1); | 
|  | Matrix<Scalar, PacketSize1, 1> res; | 
|  | VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize1, 1)); | 
|  | VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize1, 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void bug_127() { | 
|  | // Bug 127 | 
|  | // | 
|  | // a product of the form lhs*rhs with | 
|  | // | 
|  | // lhs: | 
|  | // rows = 1, cols = 4 | 
|  | // RowsAtCompileTime = 1, ColsAtCompileTime = -1 | 
|  | // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5 | 
|  | // | 
|  | // rhs: | 
|  | // rows = 4, cols = 0 | 
|  | // RowsAtCompileTime = -1, ColsAtCompileTime = -1 | 
|  | // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1 | 
|  | // | 
|  | // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using | 
|  | // the max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1. | 
|  |  | 
|  | Matrix<float, 1, Dynamic, RowMajor, 1, 5> a(1, 4); | 
|  | Matrix<float, Dynamic, Dynamic, ColMajor, 5, 1> b(4, 0); | 
|  | a* b; | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void bug_817() { | 
|  | ArrayXXf B = ArrayXXf::Random(10, 10), C; | 
|  | VectorXf x = VectorXf::Random(10); | 
|  | C = (x.transpose() * B.matrix()); | 
|  | B = (x.transpose() * B.matrix()); | 
|  | VERIFY_IS_APPROX(B, C); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void unaligned_objects() { | 
|  | // Regression test for the bug reported here: | 
|  | // http://forum.kde.org/viewtopic.php?f=74&t=107541 | 
|  | // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then. | 
|  | // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases, | 
|  | // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault. | 
|  | for (int m = 450; m < 460; ++m) { | 
|  | for (int n = 8; n < 12; ++n) { | 
|  | MatrixXf M(m, n); | 
|  | VectorXf v1(n), r1(500); | 
|  | RowVectorXf v2(m), r2(16); | 
|  |  | 
|  | M.setRandom(); | 
|  | v1.setRandom(); | 
|  | v2.setRandom(); | 
|  | for (int o = 0; o < 4; ++o) { | 
|  | r1.segment(o, m).noalias() = M * v1; | 
|  | VERIFY_IS_APPROX(r1.segment(o, m), M * MatrixXf(v1)); | 
|  | r2.segment(o, n).noalias() = v2 * M; | 
|  | VERIFY_IS_APPROX(r2.segment(o, n), MatrixXf(v2) * M); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE Index test_compute_block_size(Index m, Index n, Index k) { | 
|  | Index mc(m), nc(n), kc(k); | 
|  | internal::computeProductBlockingSizes<T, T>(kc, mc, nc); | 
|  | return kc + mc + nc; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | Index compute_block_size() { | 
|  | Index ret = 0; | 
|  | ret += test_compute_block_size<T>(0, 1, 1); | 
|  | ret += test_compute_block_size<T>(1, 0, 1); | 
|  | ret += test_compute_block_size<T>(1, 1, 0); | 
|  | ret += test_compute_block_size<T>(0, 0, 1); | 
|  | ret += test_compute_block_size<T>(0, 1, 0); | 
|  | ret += test_compute_block_size<T>(1, 0, 0); | 
|  | ret += test_compute_block_size<T>(0, 0, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | template <typename> | 
|  | void aliasing_with_resize() { | 
|  | Index m = internal::random<Index>(10, 50); | 
|  | Index n = internal::random<Index>(10, 50); | 
|  | MatrixXd A, B, C(m, n), D(m, m); | 
|  | VectorXd a, b, c(n); | 
|  | C.setRandom(); | 
|  | D.setRandom(); | 
|  | c.setRandom(); | 
|  | double s = internal::random<double>(1, 10); | 
|  |  | 
|  | A = C; | 
|  | B = A * A.transpose(); | 
|  | A = A * A.transpose(); | 
|  | VERIFY_IS_APPROX(A, B); | 
|  |  | 
|  | A = C; | 
|  | B = (A * A.transpose()) / s; | 
|  | A = (A * A.transpose()) / s; | 
|  | VERIFY_IS_APPROX(A, B); | 
|  |  | 
|  | A = C; | 
|  | B = (A * A.transpose()) + D; | 
|  | A = (A * A.transpose()) + D; | 
|  | VERIFY_IS_APPROX(A, B); | 
|  |  | 
|  | A = C; | 
|  | B = D + (A * A.transpose()); | 
|  | A = D + (A * A.transpose()); | 
|  | VERIFY_IS_APPROX(A, B); | 
|  |  | 
|  | A = C; | 
|  | B = s * (A * A.transpose()); | 
|  | A = s * (A * A.transpose()); | 
|  | VERIFY_IS_APPROX(A, B); | 
|  |  | 
|  | A = C; | 
|  | a = c; | 
|  | b = (A * a) / s; | 
|  | a = (A * a) / s; | 
|  | VERIFY_IS_APPROX(a, b); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void bug_1308() { | 
|  | int n = 10; | 
|  | MatrixXd r(n, n); | 
|  | VectorXd v = VectorXd::Random(n); | 
|  | r = v * RowVectorXd::Ones(n); | 
|  | VERIFY_IS_APPROX(r, v.rowwise().replicate(n)); | 
|  | r = VectorXd::Ones(n) * v.transpose(); | 
|  | VERIFY_IS_APPROX(r, v.rowwise().replicate(n).transpose()); | 
|  |  | 
|  | Matrix4d ones44 = Matrix4d::Ones(); | 
|  | Matrix4d m44 = Matrix4d::Ones() * Matrix4d::Ones(); | 
|  | VERIFY_IS_APPROX(m44, Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(m44.noalias() = ones44 * Matrix4d::Ones(), Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(m44.noalias() = ones44.transpose() * Matrix4d::Ones(), Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(m44.noalias() = Matrix4d::Ones() * ones44, Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(m44.noalias() = Matrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); | 
|  |  | 
|  | typedef Matrix<double, 4, 4, RowMajor> RMatrix4d; | 
|  | RMatrix4d r44 = Matrix4d::Ones() * Matrix4d::Ones(); | 
|  | VERIFY_IS_APPROX(r44, Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(r44.noalias() = ones44 * Matrix4d::Ones(), Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(r44.noalias() = ones44.transpose() * Matrix4d::Ones(), Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(r44.noalias() = Matrix4d::Ones() * ones44, Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(r44.noalias() = Matrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(r44.noalias() = ones44 * RMatrix4d::Ones(), Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(r44.noalias() = ones44.transpose() * RMatrix4d::Ones(), Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(r44.noalias() = RMatrix4d::Ones() * ones44, Matrix4d::Constant(4)); | 
|  | VERIFY_IS_APPROX(r44.noalias() = RMatrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); | 
|  |  | 
|  | //   RowVector4d r4; | 
|  | m44.setOnes(); | 
|  | r44.setZero(); | 
|  | VERIFY_IS_APPROX(r44.noalias() += m44.row(0).transpose() * RowVector4d::Ones(), ones44); | 
|  | r44.setZero(); | 
|  | VERIFY_IS_APPROX(r44.noalias() += m44.col(0) * RowVector4d::Ones(), ones44); | 
|  | r44.setZero(); | 
|  | VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.row(0), ones44); | 
|  | r44.setZero(); | 
|  | VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.col(0).transpose(), ones44); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(product_extra) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(product_extra( | 
|  | MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_2(product_extra( | 
|  | MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_2(mat_mat_scalar_scalar_product()); | 
|  | CALL_SUBTEST_3(product_extra(MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); | 
|  | CALL_SUBTEST_4(product_extra(MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2), | 
|  | internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2)))); | 
|  | CALL_SUBTEST_1(zero_sized_objects( | 
|  | MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } | 
|  | CALL_SUBTEST_5(bug_127<0>()); | 
|  | CALL_SUBTEST_5(bug_817<0>()); | 
|  | CALL_SUBTEST_5(bug_1308<0>()); | 
|  | CALL_SUBTEST_6(unaligned_objects<0>()); | 
|  | CALL_SUBTEST_7(compute_block_size<float>()); | 
|  | CALL_SUBTEST_7(compute_block_size<double>()); | 
|  | CALL_SUBTEST_7(compute_block_size<std::complex<double> >()); | 
|  | CALL_SUBTEST_8(aliasing_with_resize<void>()); | 
|  | } |