|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/QR> | 
|  | #include "solverbase.h" | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void qr() { | 
|  | static const int Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime; | 
|  | Index max_size = EIGEN_TEST_MAX_SIZE; | 
|  | Index min_size = numext::maxi(1, EIGEN_TEST_MAX_SIZE / 10); | 
|  | Index rows = Rows == Dynamic ? internal::random<Index>(min_size, max_size) : Rows, | 
|  | cols = Cols == Dynamic ? internal::random<Index>(min_size, max_size) : Cols, | 
|  | cols2 = Cols == Dynamic ? internal::random<Index>(min_size, max_size) : Cols, | 
|  | rank = internal::random<Index>(1, (std::min)(rows, cols) - 1); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; | 
|  | MatrixType m1; | 
|  | createRandomPIMatrixOfRank(rank, rows, cols, m1); | 
|  | FullPivHouseholderQR<MatrixType> qr(m1); | 
|  | VERIFY_IS_EQUAL(rank, qr.rank()); | 
|  | VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel()); | 
|  | VERIFY(!qr.isInjective()); | 
|  | VERIFY(!qr.isInvertible()); | 
|  | VERIFY(!qr.isSurjective()); | 
|  |  | 
|  | MatrixType r = qr.matrixQR(); | 
|  |  | 
|  | MatrixQType q = qr.matrixQ(); | 
|  | VERIFY_IS_UNITARY(q); | 
|  |  | 
|  | // FIXME need better way to construct trapezoid | 
|  | for (int i = 0; i < rows; i++) | 
|  | for (int j = 0; j < cols; j++) | 
|  | if (i > j) r(i, j) = Scalar(0); | 
|  |  | 
|  | MatrixType c = qr.matrixQ() * r * qr.colsPermutation().inverse(); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, c); | 
|  |  | 
|  | // stress the ReturnByValue mechanism | 
|  | MatrixType tmp; | 
|  | VERIFY_IS_APPROX(tmp.noalias() = qr.matrixQ() * r, (qr.matrixQ() * r).eval()); | 
|  |  | 
|  | check_solverbase<MatrixType, MatrixType>(m1, qr, rows, cols, cols2); | 
|  |  | 
|  | { | 
|  | MatrixType m2, m3; | 
|  | Index size = rows; | 
|  | do { | 
|  | m1 = MatrixType::Random(size, size); | 
|  | qr.compute(m1); | 
|  | } while (!qr.isInvertible()); | 
|  | MatrixType m1_inv = qr.inverse(); | 
|  | m3 = m1 * MatrixType::Random(size, cols2); | 
|  | m2 = qr.solve(m3); | 
|  | VERIFY_IS_APPROX(m2, m1_inv * m3); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void qr_invertible() { | 
|  | using std::abs; | 
|  | using std::log; | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | Index max_size = numext::mini(50, EIGEN_TEST_MAX_SIZE); | 
|  | Index min_size = numext::maxi(1, EIGEN_TEST_MAX_SIZE / 10); | 
|  | Index size = internal::random<Index>(min_size, max_size); | 
|  |  | 
|  | MatrixType m1(size, size), m2(size, size), m3(size, size); | 
|  | m1 = MatrixType::Random(size, size); | 
|  |  | 
|  | if (internal::is_same<RealScalar, float>::value) { | 
|  | // let's build a matrix more stable to inverse | 
|  | MatrixType a = MatrixType::Random(size, size * 2); | 
|  | m1 += a * a.adjoint(); | 
|  | } | 
|  |  | 
|  | FullPivHouseholderQR<MatrixType> qr(m1); | 
|  | VERIFY(qr.isInjective()); | 
|  | VERIFY(qr.isInvertible()); | 
|  | VERIFY(qr.isSurjective()); | 
|  |  | 
|  | check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size); | 
|  |  | 
|  | // now construct a matrix with prescribed determinant | 
|  | m1.setZero(); | 
|  | for (int i = 0; i < size; i++) m1(i, i) = internal::random<Scalar>(); | 
|  | Scalar det = m1.diagonal().prod(); | 
|  | RealScalar absdet = abs(det); | 
|  | m3 = qr.matrixQ();  // get a unitary | 
|  | m1 = m3 * m1 * m3.adjoint(); | 
|  | qr.compute(m1); | 
|  | VERIFY_IS_APPROX(det, qr.determinant()); | 
|  | VERIFY_IS_APPROX(absdet, qr.absDeterminant()); | 
|  | VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant()); | 
|  | VERIFY_IS_APPROX(numext::sign(det), qr.signDeterminant()); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void qr_verify_assert() { | 
|  | MatrixType tmp; | 
|  |  | 
|  | FullPivHouseholderQR<MatrixType> qr; | 
|  | VERIFY_RAISES_ASSERT(qr.matrixQR()) | 
|  | VERIFY_RAISES_ASSERT(qr.solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(qr.matrixQ()) | 
|  | VERIFY_RAISES_ASSERT(qr.dimensionOfKernel()) | 
|  | VERIFY_RAISES_ASSERT(qr.isInjective()) | 
|  | VERIFY_RAISES_ASSERT(qr.isSurjective()) | 
|  | VERIFY_RAISES_ASSERT(qr.isInvertible()) | 
|  | VERIFY_RAISES_ASSERT(qr.inverse()) | 
|  | VERIFY_RAISES_ASSERT(qr.determinant()) | 
|  | VERIFY_RAISES_ASSERT(qr.absDeterminant()) | 
|  | VERIFY_RAISES_ASSERT(qr.logAbsDeterminant()) | 
|  | VERIFY_RAISES_ASSERT(qr.signDeterminant()) | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(qr_fullpivoting) { | 
|  | for (int i = 0; i < 1; i++) { | 
|  | CALL_SUBTEST_5(qr<Matrix3f>()); | 
|  | CALL_SUBTEST_6(qr<Matrix3d>()); | 
|  | CALL_SUBTEST_8(qr<Matrix2f>()); | 
|  | CALL_SUBTEST_1(qr<MatrixXf>()); | 
|  | CALL_SUBTEST_2(qr<MatrixXd>()); | 
|  | CALL_SUBTEST_3(qr<MatrixXcd>()); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(qr_invertible<MatrixXf>()); | 
|  | CALL_SUBTEST_2(qr_invertible<MatrixXd>()); | 
|  | CALL_SUBTEST_4(qr_invertible<MatrixXcf>()); | 
|  | CALL_SUBTEST_3(qr_invertible<MatrixXcd>()); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_5(qr_verify_assert<Matrix3f>()); | 
|  | CALL_SUBTEST_6(qr_verify_assert<Matrix3d>()); | 
|  | CALL_SUBTEST_1(qr_verify_assert<MatrixXf>()); | 
|  | CALL_SUBTEST_2(qr_verify_assert<MatrixXd>()); | 
|  | CALL_SUBTEST_4(qr_verify_assert<MatrixXcf>()); | 
|  | CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>()); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_7(FullPivHouseholderQR<MatrixXf>(10, 20)); | 
|  | CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float, 10, 20> >(10, 20))); | 
|  | CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float, 10, 20> >(Matrix<float, 10, 20>::Random()))); | 
|  | CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float, 20, 10> >(20, 10))); | 
|  | CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float, 20, 10> >(Matrix<float, 20, 10>::Random()))); | 
|  | } |