|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "sparse.h" | 
|  | #include "AnnoyingScalar.h" | 
|  |  | 
|  | template <typename T> | 
|  | std::enable_if_t<(T::Flags & RowMajorBit) == RowMajorBit, typename T::RowXpr> innervec(T& A, Index i) { | 
|  | return A.row(i); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | std::enable_if_t<(T::Flags & RowMajorBit) == 0, typename T::ColXpr> innervec(T& A, Index i) { | 
|  | return A.col(i); | 
|  | } | 
|  |  | 
|  | template <typename SparseMatrixType> | 
|  | void sparse_block(const SparseMatrixType& ref) { | 
|  | const Index rows = ref.rows(); | 
|  | const Index cols = ref.cols(); | 
|  | const Index inner = ref.innerSize(); | 
|  | const Index outer = ref.outerSize(); | 
|  |  | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | typedef typename SparseMatrixType::RealScalar RealScalar; | 
|  | typedef typename SparseMatrixType::StorageIndex StorageIndex; | 
|  |  | 
|  | double density = (std::max)(8. / (rows * cols), 0.01); | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, SparseMatrixType::IsRowMajor ? RowMajor : ColMajor> DenseMatrix; | 
|  | typedef Matrix<Scalar, Dynamic, 1> DenseVector; | 
|  | typedef Matrix<Scalar, 1, Dynamic> RowDenseVector; | 
|  | typedef SparseVector<Scalar> SparseVectorType; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  | { | 
|  | SparseMatrixType m(rows, cols); | 
|  | DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | 
|  | initSparse<Scalar>(density, refMat, m); | 
|  |  | 
|  | VERIFY_IS_APPROX(m, refMat); | 
|  |  | 
|  | // test InnerIterators and Block expressions | 
|  | for (int t = 0; t < 10; ++t) { | 
|  | Index j = internal::random<Index>(0, cols - 2); | 
|  | Index i = internal::random<Index>(0, rows - 2); | 
|  | Index w = internal::random<Index>(1, cols - j); | 
|  | Index h = internal::random<Index>(1, rows - i); | 
|  |  | 
|  | VERIFY_IS_APPROX(m.block(i, j, h, w), refMat.block(i, j, h, w)); | 
|  | for (Index c = 0; c < w; c++) { | 
|  | VERIFY_IS_APPROX(m.block(i, j, h, w).col(c), refMat.block(i, j, h, w).col(c)); | 
|  | for (Index r = 0; r < h; r++) { | 
|  | VERIFY_IS_APPROX(m.block(i, j, h, w).col(c).coeff(r), refMat.block(i, j, h, w).col(c).coeff(r)); | 
|  | VERIFY_IS_APPROX(m.block(i, j, h, w).coeff(r, c), refMat.block(i, j, h, w).coeff(r, c)); | 
|  | } | 
|  | } | 
|  | for (Index r = 0; r < h; r++) { | 
|  | VERIFY_IS_APPROX(m.block(i, j, h, w).row(r), refMat.block(i, j, h, w).row(r)); | 
|  | for (Index c = 0; c < w; c++) { | 
|  | VERIFY_IS_APPROX(m.block(i, j, h, w).row(r).coeff(c), refMat.block(i, j, h, w).row(r).coeff(c)); | 
|  | VERIFY_IS_APPROX(m.block(i, j, h, w).coeff(r, c), refMat.block(i, j, h, w).coeff(r, c)); | 
|  | } | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(m.middleCols(j, w), refMat.middleCols(j, w)); | 
|  | VERIFY_IS_APPROX(m.middleRows(i, h), refMat.middleRows(i, h)); | 
|  | for (Index r = 0; r < h; r++) { | 
|  | VERIFY_IS_APPROX(m.middleCols(j, w).row(r), refMat.middleCols(j, w).row(r)); | 
|  | VERIFY_IS_APPROX(m.middleRows(i, h).row(r), refMat.middleRows(i, h).row(r)); | 
|  | for (Index c = 0; c < w; c++) { | 
|  | VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); | 
|  | VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m.middleCols(j, w).coeff(r, c), refMat.middleCols(j, w).coeff(r, c)); | 
|  | VERIFY_IS_APPROX(m.middleRows(i, h).coeff(r, c), refMat.middleRows(i, h).coeff(r, c)); | 
|  | if (!numext::is_exactly_zero(m.middleCols(j, w).coeff(r, c))) { | 
|  | VERIFY_IS_APPROX(m.middleCols(j, w).coeffRef(r, c), refMat.middleCols(j, w).coeff(r, c)); | 
|  | } | 
|  | if (!numext::is_exactly_zero(m.middleRows(i, h).coeff(r, c))) { | 
|  | VERIFY_IS_APPROX(m.middleRows(i, h).coeff(r, c), refMat.middleRows(i, h).coeff(r, c)); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (Index c = 0; c < w; c++) { | 
|  | VERIFY_IS_APPROX(m.middleCols(j, w).col(c), refMat.middleCols(j, w).col(c)); | 
|  | VERIFY_IS_APPROX(m.middleRows(i, h).col(c), refMat.middleRows(i, h).col(c)); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Index c = 0; c < cols; c++) { | 
|  | VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); | 
|  | VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); | 
|  | } | 
|  |  | 
|  | for (Index r = 0; r < rows; r++) { | 
|  | VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); | 
|  | VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // test innerVector() | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | Index j0 = internal::random<Index>(0, outer - 1); | 
|  | Index j1 = internal::random<Index>(0, outer - 1); | 
|  | Index r0 = internal::random<Index>(0, rows - 1); | 
|  | Index c0 = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2, j0)); | 
|  | VERIFY_IS_APPROX(m2.innerVector(j0) + m2.innerVector(j1), innervec(refMat2, j0) + innervec(refMat2, j1)); | 
|  |  | 
|  | m2.innerVector(j0) *= Scalar(2); | 
|  | innervec(refMat2, j0) *= Scalar(2); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | m2.row(r0) *= Scalar(3); | 
|  | refMat2.row(r0) *= Scalar(3); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | m2.col(c0) *= Scalar(4); | 
|  | refMat2.col(c0) *= Scalar(4); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | m2.row(r0) /= Scalar(3); | 
|  | refMat2.row(r0) /= Scalar(3); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | m2.col(c0) /= Scalar(4); | 
|  | refMat2.col(c0) /= Scalar(4); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | SparseVectorType v1; | 
|  | VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0) * 4); | 
|  | VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose() * 4); | 
|  |  | 
|  | SparseMatrixType m3(rows, cols); | 
|  | m3.reserve(VectorXi::Constant(outer, int(inner / 2))); | 
|  | for (Index j = 0; j < outer; ++j) | 
|  | for (Index k = 0; k < (std::min)(j, inner); ++k) | 
|  | m3.insertByOuterInner(j, k) = internal::convert_index<StorageIndex>(k + 1); | 
|  | for (Index j = 0; j < (std::min)(outer, inner); ++j) { | 
|  | VERIFY(j == numext::real(m3.innerVector(j).nonZeros())); | 
|  | if (j > 0) VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff())); | 
|  | } | 
|  | m3.makeCompressed(); | 
|  | for (Index j = 0; j < (std::min)(outer, inner); ++j) { | 
|  | VERIFY(j == numext::real(m3.innerVector(j).nonZeros())); | 
|  | if (j > 0) VERIFY_IS_EQUAL(RealScalar(j), numext::real(m3.innerVector(j).lastCoeff())); | 
|  | } | 
|  |  | 
|  | VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros()); | 
|  |  | 
|  | //     m2.innerVector(j0) = 2*m2.innerVector(j1); | 
|  | //     refMat2.col(j0) = 2*refMat2.col(j1); | 
|  | //     VERIFY_IS_APPROX(m2, refMat2); | 
|  | } | 
|  |  | 
|  | // test innerVectors() | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | if (internal::random<float>(0, 1) > 0.5f) m2.makeCompressed(); | 
|  | Index j0 = internal::random<Index>(0, outer - 2); | 
|  | Index j1 = internal::random<Index>(0, outer - 2); | 
|  | Index n0 = internal::random<Index>(1, outer - (std::max)(j0, j1)); | 
|  | if (SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0, n0), refMat2.block(j0, 0, n0, cols)); | 
|  | else | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0, n0), refMat2.block(0, j0, rows, n0)); | 
|  | if (SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0), | 
|  | refMat2.middleRows(j0, n0) + refMat2.middleRows(j1, n0)); | 
|  | else | 
|  | VERIFY_IS_APPROX(m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0), | 
|  | refMat2.block(0, j0, rows, n0) + refMat2.block(0, j1, rows, n0)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | VERIFY(m2.innerVectors(j0, n0).nonZeros() == m2.transpose().innerVectors(j0, n0).nonZeros()); | 
|  |  | 
|  | m2.innerVectors(j0, n0) = m2.innerVectors(j0, n0) + m2.innerVectors(j1, n0); | 
|  | if (SparseMatrixType::IsRowMajor) | 
|  | refMat2.middleRows(j0, n0) = (refMat2.middleRows(j0, n0) + refMat2.middleRows(j1, n0)).eval(); | 
|  | else | 
|  | refMat2.middleCols(j0, n0) = (refMat2.middleCols(j0, n0) + refMat2.middleCols(j1, n0)).eval(); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | } | 
|  |  | 
|  | // test generic blocks | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | Index j0 = internal::random<Index>(0, outer - 2); | 
|  | Index j1 = internal::random<Index>(0, outer - 2); | 
|  | Index n0 = internal::random<Index>(1, outer - (std::max)(j0, j1)); | 
|  | if (SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m2.block(j0, 0, n0, cols), refMat2.block(j0, 0, n0, cols)); | 
|  | else | 
|  | VERIFY_IS_APPROX(m2.block(0, j0, rows, n0), refMat2.block(0, j0, rows, n0)); | 
|  |  | 
|  | if (SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m2.block(j0, 0, n0, cols) + m2.block(j1, 0, n0, cols), | 
|  | refMat2.block(j0, 0, n0, cols) + refMat2.block(j1, 0, n0, cols)); | 
|  | else | 
|  | VERIFY_IS_APPROX(m2.block(0, j0, rows, n0) + m2.block(0, j1, rows, n0), | 
|  | refMat2.block(0, j0, rows, n0) + refMat2.block(0, j1, rows, n0)); | 
|  |  | 
|  | Index i = internal::random<Index>(0, m2.outerSize() - 1); | 
|  | if (SparseMatrixType::IsRowMajor) { | 
|  | m2.innerVector(i) = m2.innerVector(i) * s1; | 
|  | refMat2.row(i) = refMat2.row(i) * s1; | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | } else { | 
|  | m2.innerVector(i) = m2.innerVector(i) * s1; | 
|  | refMat2.col(i) = refMat2.col(i) * s1; | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | } | 
|  |  | 
|  | Index r0 = internal::random<Index>(0, rows - 2); | 
|  | Index c0 = internal::random<Index>(0, cols - 2); | 
|  | Index r1 = internal::random<Index>(1, rows - r0); | 
|  | Index c1 = internal::random<Index>(1, cols - c0); | 
|  |  | 
|  | VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0)); | 
|  | VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0)); | 
|  |  | 
|  | VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0)); | 
|  | VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m2.block(r0, c0, r1, c1), refMat2.block(r0, c0, r1, c1)); | 
|  | VERIFY_IS_APPROX((2 * m2).block(r0, c0, r1, c1), (2 * refMat2).block(r0, c0, r1, c1)); | 
|  |  | 
|  | if (m2.nonZeros() > 0) { | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | SparseMatrixType m3(rows, cols); | 
|  | DenseMatrix refMat3(rows, cols); | 
|  | refMat3.setZero(); | 
|  | Index n = internal::random<Index>(1, 10); | 
|  | for (Index k = 0; k < n; ++k) { | 
|  | Index o1 = internal::random<Index>(0, outer - 1); | 
|  | Index o2 = internal::random<Index>(0, outer - 1); | 
|  | if (SparseMatrixType::IsRowMajor) { | 
|  | m3.innerVector(o1) = m2.row(o2); | 
|  | refMat3.row(o1) = refMat2.row(o2); | 
|  | } else { | 
|  | m3.innerVector(o1) = m2.col(o2); | 
|  | refMat3.col(o1) = refMat2.col(o2); | 
|  | } | 
|  | if (internal::random<bool>()) m3.makeCompressed(); | 
|  | } | 
|  | if (m3.nonZeros() > 0) VERIFY_IS_APPROX(m3, refMat3); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Explicit inner iterator. | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  |  | 
|  | Index j0 = internal::random<Index>(0, outer - 1); | 
|  | auto v = innervec(m2, j0); | 
|  |  | 
|  | typename decltype(v)::InnerIterator block_iterator(v); | 
|  | typename SparseMatrixType::InnerIterator matrix_iterator(m2, j0); | 
|  | while (block_iterator) { | 
|  | VERIFY_IS_EQUAL(block_iterator.index(), matrix_iterator.index()); | 
|  | ++block_iterator; | 
|  | ++matrix_iterator; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(sparse_block) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | int r = Eigen::internal::random<int>(1, 200), c = Eigen::internal::random<int>(1, 200); | 
|  | if (Eigen::internal::random<int>(0, 4) == 0) { | 
|  | r = c;  // check square matrices in 25% of tries | 
|  | } | 
|  | EIGEN_UNUSED_VARIABLE(r + c); | 
|  | CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(1, 1)))); | 
|  | CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(8, 8)))); | 
|  | CALL_SUBTEST_1((sparse_block(SparseMatrix<double>(r, c)))); | 
|  | CALL_SUBTEST_2((sparse_block(SparseMatrix<std::complex<double>, ColMajor>(r, c)))); | 
|  | CALL_SUBTEST_2((sparse_block(SparseMatrix<std::complex<double>, RowMajor>(r, c)))); | 
|  |  | 
|  | CALL_SUBTEST_3((sparse_block(SparseMatrix<double, ColMajor, long int>(r, c)))); | 
|  | CALL_SUBTEST_3((sparse_block(SparseMatrix<double, RowMajor, long int>(r, c)))); | 
|  |  | 
|  | r = Eigen::internal::random<int>(1, 100); | 
|  | c = Eigen::internal::random<int>(1, 100); | 
|  | if (Eigen::internal::random<int>(0, 4) == 0) { | 
|  | r = c;  // check square matrices in 25% of tries | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_4((sparse_block(SparseMatrix<double, ColMajor, short int>(short(r), short(c))))); | 
|  | CALL_SUBTEST_4((sparse_block(SparseMatrix<double, RowMajor, short int>(short(r), short(c))))); | 
|  | #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW | 
|  | AnnoyingScalar::dont_throw = true; | 
|  | #endif | 
|  | CALL_SUBTEST_5((sparse_block(SparseMatrix<AnnoyingScalar>(r, c)))); | 
|  | } | 
|  | } |