| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <iterator> |
| #include <numeric> |
| |
| template <class Iterator> |
| std::reverse_iterator<Iterator> make_reverse_iterator(Iterator i) { |
| return std::reverse_iterator<Iterator>(i); |
| } |
| |
| using std::is_sorted; |
| |
| template <typename XprType> |
| bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType>&) { |
| return true; |
| } |
| |
| template <typename XprType> |
| bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType>&) { |
| return true; |
| } |
| |
| template <typename Iter> |
| bool is_default_constructible_and_assignable(const Iter& it) { |
| VERIFY(std::is_default_constructible<Iter>::value); |
| VERIFY(std::is_nothrow_default_constructible<Iter>::value); |
| Iter it2; |
| it2 = it; |
| return (it == it2); |
| } |
| |
| template <typename Xpr> |
| void check_begin_end_for_loop(Xpr xpr) { |
| const Xpr& cxpr(xpr); |
| Index i = 0; |
| |
| i = 0; |
| for (typename Xpr::iterator it = xpr.begin(); it != xpr.end(); ++it) { |
| VERIFY_IS_EQUAL(*it, xpr[i++]); |
| } |
| |
| i = 0; |
| for (typename Xpr::const_iterator it = xpr.cbegin(); it != xpr.cend(); ++it) { |
| VERIFY_IS_EQUAL(*it, xpr[i++]); |
| } |
| |
| i = 0; |
| for (typename Xpr::const_iterator it = cxpr.begin(); it != cxpr.end(); ++it) { |
| VERIFY_IS_EQUAL(*it, xpr[i++]); |
| } |
| |
| i = 0; |
| for (typename Xpr::const_iterator it = xpr.begin(); it != xpr.end(); ++it) { |
| VERIFY_IS_EQUAL(*it, xpr[i++]); |
| } |
| |
| { |
| // simple API check |
| typename Xpr::const_iterator cit = xpr.begin(); |
| cit = xpr.cbegin(); |
| |
| auto tmp1 = xpr.begin(); |
| VERIFY(tmp1 == xpr.begin()); |
| auto tmp2 = xpr.cbegin(); |
| VERIFY(tmp2 == xpr.cbegin()); |
| } |
| |
| VERIFY(xpr.end() - xpr.begin() == xpr.size()); |
| VERIFY(xpr.cend() - xpr.begin() == xpr.size()); |
| VERIFY(xpr.end() - xpr.cbegin() == xpr.size()); |
| VERIFY(xpr.cend() - xpr.cbegin() == xpr.size()); |
| |
| if (xpr.size() > 0) { |
| VERIFY(xpr.begin() != xpr.end()); |
| VERIFY(xpr.begin() < xpr.end()); |
| VERIFY(xpr.begin() <= xpr.end()); |
| VERIFY(!(xpr.begin() == xpr.end())); |
| VERIFY(!(xpr.begin() > xpr.end())); |
| VERIFY(!(xpr.begin() >= xpr.end())); |
| |
| VERIFY(xpr.cbegin() != xpr.end()); |
| VERIFY(xpr.cbegin() < xpr.end()); |
| VERIFY(xpr.cbegin() <= xpr.end()); |
| VERIFY(!(xpr.cbegin() == xpr.end())); |
| VERIFY(!(xpr.cbegin() > xpr.end())); |
| VERIFY(!(xpr.cbegin() >= xpr.end())); |
| |
| VERIFY(xpr.begin() != xpr.cend()); |
| VERIFY(xpr.begin() < xpr.cend()); |
| VERIFY(xpr.begin() <= xpr.cend()); |
| VERIFY(!(xpr.begin() == xpr.cend())); |
| VERIFY(!(xpr.begin() > xpr.cend())); |
| VERIFY(!(xpr.begin() >= xpr.cend())); |
| } |
| } |
| |
| template <typename Scalar, int Rows, int Cols> |
| void test_stl_iterators(int rows = Rows, int cols = Cols) { |
| typedef Matrix<Scalar, Rows, 1> VectorType; |
| typedef Matrix<Scalar, 1, Cols> RowVectorType; |
| typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMatrixType; |
| typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMatrixType; |
| VectorType v = VectorType::Random(rows); |
| const VectorType& cv(v); |
| ColMatrixType A = ColMatrixType::Random(rows, cols); |
| const ColMatrixType& cA(A); |
| RowMatrixType B = RowMatrixType::Random(rows, cols); |
| using Eigen::placeholders::last; |
| |
| Index i, j; |
| |
| // Verify that iterators are default constructible (See bug #1900) |
| { |
| VERIFY(is_default_constructible_and_assignable(v.begin())); |
| VERIFY(is_default_constructible_and_assignable(v.end())); |
| VERIFY(is_default_constructible_and_assignable(cv.begin())); |
| VERIFY(is_default_constructible_and_assignable(cv.end())); |
| |
| VERIFY(is_default_constructible_and_assignable(A.row(0).begin())); |
| VERIFY(is_default_constructible_and_assignable(A.row(0).end())); |
| VERIFY(is_default_constructible_and_assignable(cA.row(0).begin())); |
| VERIFY(is_default_constructible_and_assignable(cA.row(0).end())); |
| |
| VERIFY(is_default_constructible_and_assignable(B.row(0).begin())); |
| VERIFY(is_default_constructible_and_assignable(B.row(0).end())); |
| } |
| |
| // Check we got a fast pointer-based iterator when expected |
| { |
| VERIFY(is_pointer_based_stl_iterator(v.begin())); |
| VERIFY(is_pointer_based_stl_iterator(v.end())); |
| VERIFY(is_pointer_based_stl_iterator(cv.begin())); |
| VERIFY(is_pointer_based_stl_iterator(cv.end())); |
| |
| j = internal::random<Index>(0, A.cols() - 1); |
| VERIFY(is_pointer_based_stl_iterator(A.col(j).begin())); |
| VERIFY(is_pointer_based_stl_iterator(A.col(j).end())); |
| VERIFY(is_pointer_based_stl_iterator(cA.col(j).begin())); |
| VERIFY(is_pointer_based_stl_iterator(cA.col(j).end())); |
| |
| i = internal::random<Index>(0, A.rows() - 1); |
| VERIFY(is_pointer_based_stl_iterator(A.row(i).begin())); |
| VERIFY(is_pointer_based_stl_iterator(A.row(i).end())); |
| VERIFY(is_pointer_based_stl_iterator(cA.row(i).begin())); |
| VERIFY(is_pointer_based_stl_iterator(cA.row(i).end())); |
| |
| VERIFY(is_pointer_based_stl_iterator(A.reshaped().begin())); |
| VERIFY(is_pointer_based_stl_iterator(A.reshaped().end())); |
| VERIFY(is_pointer_based_stl_iterator(cA.reshaped().begin())); |
| VERIFY(is_pointer_based_stl_iterator(cA.reshaped().end())); |
| |
| VERIFY(is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin())); |
| VERIFY(is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end())); |
| |
| VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin())); |
| VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end())); |
| } |
| |
| { |
| check_begin_end_for_loop(v); |
| check_begin_end_for_loop(A.col(internal::random<Index>(0, A.cols() - 1))); |
| check_begin_end_for_loop(A.row(internal::random<Index>(0, A.rows() - 1))); |
| check_begin_end_for_loop(v + v); |
| } |
| |
| // check swappable |
| { |
| using std::swap; |
| // pointer-based |
| { |
| VectorType v_copy = v; |
| auto a = v.begin(); |
| auto b = v.end() - 1; |
| swap(a, b); |
| VERIFY_IS_EQUAL(v, v_copy); |
| VERIFY_IS_EQUAL(*b, *v.begin()); |
| VERIFY_IS_EQUAL(*b, v(0)); |
| VERIFY_IS_EQUAL(*a, v.end()[-1]); |
| VERIFY_IS_EQUAL(*a, v(last)); |
| } |
| |
| // generic |
| { |
| RowMatrixType B_copy = B; |
| auto Br = B.reshaped(); |
| auto a = Br.begin(); |
| auto b = Br.end() - 1; |
| swap(a, b); |
| VERIFY_IS_EQUAL(B, B_copy); |
| VERIFY_IS_EQUAL(*b, *Br.begin()); |
| VERIFY_IS_EQUAL(*b, Br(0)); |
| VERIFY_IS_EQUAL(*a, Br.end()[-1]); |
| VERIFY_IS_EQUAL(*a, Br(last)); |
| } |
| } |
| |
| // check non-const iterator with for-range loops |
| { |
| i = 0; |
| for (auto x : v) { |
| VERIFY_IS_EQUAL(x, v[i++]); |
| } |
| |
| j = internal::random<Index>(0, A.cols() - 1); |
| i = 0; |
| for (auto x : A.col(j)) { |
| VERIFY_IS_EQUAL(x, A(i++, j)); |
| } |
| |
| i = 0; |
| for (auto x : (v + A.col(j))) { |
| VERIFY_IS_APPROX(x, v(i) + A(i, j)); |
| ++i; |
| } |
| |
| j = 0; |
| i = internal::random<Index>(0, A.rows() - 1); |
| for (auto x : A.row(i)) { |
| VERIFY_IS_EQUAL(x, A(i, j++)); |
| } |
| |
| i = 0; |
| for (auto x : A.reshaped()) { |
| VERIFY_IS_EQUAL(x, A(i++)); |
| } |
| } |
| |
| // same for const_iterator |
| { |
| i = 0; |
| for (auto x : cv) { |
| VERIFY_IS_EQUAL(x, v[i++]); |
| } |
| |
| i = 0; |
| for (auto x : cA.reshaped()) { |
| VERIFY_IS_EQUAL(x, A(i++)); |
| } |
| |
| j = 0; |
| i = internal::random<Index>(0, A.rows() - 1); |
| for (auto x : cA.row(i)) { |
| VERIFY_IS_EQUAL(x, A(i, j++)); |
| } |
| } |
| |
| // check reshaped() on row-major |
| { |
| i = 0; |
| Matrix<Scalar, Dynamic, Dynamic, ColMajor> Bc = B; |
| for (auto x : B.reshaped()) { |
| VERIFY_IS_EQUAL(x, Bc(i++)); |
| } |
| } |
| |
| // check write access |
| { |
| VectorType w(v.size()); |
| i = 0; |
| for (auto& x : w) { |
| x = v(i++); |
| } |
| VERIFY_IS_EQUAL(v, w); |
| } |
| |
| // check for dangling pointers |
| { |
| // no dangling because pointer-based |
| { |
| j = internal::random<Index>(0, A.cols() - 1); |
| auto it = A.col(j).begin(); |
| for (i = 0; i < rows; ++i) { |
| VERIFY_IS_EQUAL(it[i], A(i, j)); |
| } |
| } |
| |
| // no dangling because pointer-based |
| { |
| i = internal::random<Index>(0, A.rows() - 1); |
| auto it = A.row(i).begin(); |
| for (j = 0; j < cols; ++j) { |
| VERIFY_IS_EQUAL(it[j], A(i, j)); |
| } |
| } |
| |
| { |
| j = internal::random<Index>(0, A.cols() - 1); |
| // this would produce a dangling pointer: |
| // auto it = (A+2*A).col(j).begin(); |
| // we need to name the temporary expression: |
| auto tmp = (A + 2 * A).col(j); |
| auto it = tmp.begin(); |
| for (i = 0; i < rows; ++i) { |
| VERIFY_IS_APPROX(it[i], 3 * A(i, j)); |
| } |
| } |
| } |
| |
| { |
| // check basic for loop on vector-wise iterators |
| j = 0; |
| for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { |
| VERIFY_IS_APPROX(it->coeff(0), A(0, j)); |
| VERIFY_IS_APPROX((*it).coeff(0), A(0, j)); |
| } |
| j = 0; |
| for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) { |
| (*it).coeffRef(0) = (*it).coeff(0); // compilation check |
| it->coeffRef(0) = it->coeff(0); // compilation check |
| VERIFY_IS_APPROX(it->coeff(0), A(0, j)); |
| VERIFY_IS_APPROX((*it).coeff(0), A(0, j)); |
| } |
| |
| // check valuetype gives us a copy |
| j = 0; |
| for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { |
| typename decltype(it)::value_type tmp = *it; |
| VERIFY_IS_NOT_EQUAL(tmp.data(), it->data()); |
| VERIFY_IS_APPROX(tmp, A.col(j)); |
| } |
| } |
| |
| if (rows >= 3) { |
| VERIFY_IS_EQUAL((v.begin() + rows / 2)[1], v(rows / 2 + 1)); |
| |
| VERIFY_IS_EQUAL((A.rowwise().begin() + rows / 2)[1], A.row(rows / 2 + 1)); |
| } |
| |
| if (cols >= 3) { |
| VERIFY_IS_EQUAL((A.colwise().begin() + cols / 2)[1], A.col(cols / 2 + 1)); |
| } |
| |
| // check std::sort |
| { |
| // first check that is_sorted returns false when required |
| if (rows >= 2) { |
| v(1) = v(0) - Scalar(1); |
| VERIFY(!is_sorted(std::begin(v), std::end(v))); |
| } |
| |
| // on a vector |
| { |
| std::sort(v.begin(), v.end()); |
| VERIFY(is_sorted(v.begin(), v.end())); |
| VERIFY(!::is_sorted(make_reverse_iterator(v.end()), make_reverse_iterator(v.begin()))); |
| } |
| |
| // on a column of a column-major matrix -> pointer-based iterator and default increment |
| { |
| j = internal::random<Index>(0, A.cols() - 1); |
| // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators |
| typename ColMatrixType::ColXpr Acol = A.col(j); |
| std::sort(Acol.begin(), Acol.end()); |
| VERIFY(is_sorted(Acol.cbegin(), Acol.cend())); |
| A.setRandom(); |
| |
| std::sort(A.col(j).begin(), A.col(j).end()); |
| VERIFY(is_sorted(A.col(j).cbegin(), A.col(j).cend())); |
| A.setRandom(); |
| } |
| |
| // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment |
| { |
| i = internal::random<Index>(0, A.rows() - 1); |
| typename ColMatrixType::RowXpr Arow = A.row(i); |
| VERIFY_IS_EQUAL(std::distance(Arow.begin(), Arow.end()), cols); |
| std::sort(Arow.begin(), Arow.end()); |
| VERIFY(is_sorted(Arow.cbegin(), Arow.cend())); |
| A.setRandom(); |
| |
| std::sort(A.row(i).begin(), A.row(i).end()); |
| VERIFY(is_sorted(A.row(i).cbegin(), A.row(i).cend())); |
| A.setRandom(); |
| } |
| |
| // with a generic iterator |
| { |
| Reshaped<RowMatrixType, RowMatrixType::SizeAtCompileTime, 1> B1 = B.reshaped(); |
| std::sort(B1.begin(), B1.end()); |
| VERIFY(is_sorted(B1.cbegin(), B1.cend())); |
| B.setRandom(); |
| |
| // assertion because nested expressions are different |
| // std::sort(B.reshaped().begin(),B.reshaped().end()); |
| // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend())); |
| // B.setRandom(); |
| } |
| } |
| |
| // check with partial_sum |
| { |
| j = internal::random<Index>(0, A.cols() - 1); |
| typename ColMatrixType::ColXpr Acol = A.col(j); |
| std::partial_sum(Acol.begin(), Acol.end(), v.begin()); |
| VERIFY_IS_APPROX(v(seq(1, last)), v(seq(0, last - 1)) + Acol(seq(1, last))); |
| |
| // inplace |
| std::partial_sum(Acol.begin(), Acol.end(), Acol.begin()); |
| VERIFY_IS_APPROX(v, Acol); |
| } |
| |
| // stress random access as required by std::nth_element |
| if (rows >= 3) { |
| v.setRandom(); |
| VectorType v1 = v; |
| std::sort(v1.begin(), v1.end()); |
| std::nth_element(v.begin(), v.begin() + rows / 2, v.end()); |
| VERIFY_IS_APPROX(v1(rows / 2), v(rows / 2)); |
| |
| v.setRandom(); |
| v1 = v; |
| std::sort(v1.begin() + rows / 2, v1.end()); |
| std::nth_element(v.begin() + rows / 2, v.begin() + rows / 4, v.end()); |
| VERIFY_IS_APPROX(v1(rows / 4), v(rows / 4)); |
| } |
| |
| // check rows/cols iterators with range-for loops |
| { |
| j = 0; |
| for (auto c : A.colwise()) { |
| VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); |
| ++j; |
| } |
| j = 0; |
| for (auto c : B.colwise()) { |
| VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); |
| ++j; |
| } |
| |
| j = 0; |
| for (auto c : B.colwise()) { |
| i = 0; |
| for (auto& x : c) { |
| VERIFY_IS_EQUAL(x, B(i, j)); |
| x = A(i, j); |
| ++i; |
| } |
| ++j; |
| } |
| VERIFY_IS_APPROX(A, B); |
| B.setRandom(); |
| |
| i = 0; |
| for (auto r : A.rowwise()) { |
| VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); |
| ++i; |
| } |
| i = 0; |
| for (auto r : B.rowwise()) { |
| VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); |
| ++i; |
| } |
| } |
| |
| // check rows/cols iterators with STL algorithms |
| { |
| RowVectorType row = RowVectorType::Random(cols); |
| VectorType col = VectorType::Random(rows); |
| // Prevent overflows for integer types. |
| if (Eigen::NumTraits<Scalar>::IsInteger) { |
| Scalar kMaxVal = Scalar(1000); |
| row.array() = row.array() - kMaxVal * (row.array() / kMaxVal); |
| col.array() = col.array() - kMaxVal * (col.array() / kMaxVal); |
| } |
| A.rowwise() = row; |
| VERIFY(std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { |
| return internal::isApprox(x.squaredNorm(), row.squaredNorm()); |
| })); |
| VERIFY(std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { |
| return internal::isApprox(x.squaredNorm(), row.squaredNorm()); |
| })); |
| |
| A.colwise() = col; |
| VERIFY(std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { |
| return internal::isApprox(x.squaredNorm(), col.squaredNorm()); |
| })); |
| VERIFY(std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) { |
| return internal::isApprox(x.squaredNorm(), col.squaredNorm()); |
| })); |
| VERIFY(std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { |
| return internal::isApprox(x.squaredNorm(), col.squaredNorm()); |
| })); |
| VERIFY(std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { |
| return internal::isApprox(x.squaredNorm(), col.squaredNorm()); |
| })); |
| |
| i = internal::random<Index>(0, A.rows() - 1); |
| A.setRandom(); |
| A.row(i).setZero(); |
| VERIFY_IS_EQUAL( |
| std::find_if(A.rowwise().begin(), A.rowwise().end(), |
| [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - |
| A.rowwise().begin(), |
| i); |
| VERIFY_IS_EQUAL( |
| std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), |
| [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - |
| A.rowwise().rbegin(), |
| (A.rows() - 1) - i); |
| |
| j = internal::random<Index>(0, A.cols() - 1); |
| A.setRandom(); |
| A.col(j).setZero(); |
| VERIFY_IS_EQUAL( |
| std::find_if(A.colwise().begin(), A.colwise().end(), |
| [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - |
| A.colwise().begin(), |
| j); |
| VERIFY_IS_EQUAL( |
| std::find_if(A.colwise().rbegin(), A.colwise().rend(), |
| [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - |
| A.colwise().rbegin(), |
| (A.cols() - 1) - j); |
| } |
| |
| { |
| using VecOp = VectorwiseOp<ArrayXXi, 0>; |
| STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value)); |
| STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend())>::value)); |
| STATIC_CHECK( |
| (internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value)); |
| STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::cend(std::declval<const VecOp&>()))>::value)); |
| } |
| } |
| |
| // When the compiler sees expression IsContainerTest<C>(0), if C is an |
| // STL-style container class, the first overload of IsContainerTest |
| // will be viable (since both C::iterator* and C::const_iterator* are |
| // valid types and NULL can be implicitly converted to them). It will |
| // be picked over the second overload as 'int' is a perfect match for |
| // the type of argument 0. If C::iterator or C::const_iterator is not |
| // a valid type, the first overload is not viable, and the second |
| // overload will be picked. |
| template <class C, class Iterator = decltype(::std::declval<const C&>().begin()), |
| class = decltype(::std::declval<const C&>().end()), class = decltype(++::std::declval<Iterator&>()), |
| class = decltype(*::std::declval<Iterator>()), class = typename C::const_iterator> |
| bool IsContainerType(int /* dummy */) { |
| return true; |
| } |
| |
| template <class C> |
| bool IsContainerType(long /* dummy */) { |
| return false; |
| } |
| |
| template <typename Scalar, int Rows, int Cols> |
| void test_stl_container_detection(int rows = Rows, int cols = Cols) { |
| typedef Matrix<Scalar, Rows, 1> VectorType; |
| typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMatrixType; |
| typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMatrixType; |
| |
| ColMatrixType A = ColMatrixType::Random(rows, cols); |
| RowMatrixType B = RowMatrixType::Random(rows, cols); |
| |
| Index i = 1; |
| |
| using ColMatrixColType = decltype(A.col(i)); |
| using ColMatrixRowType = decltype(A.row(i)); |
| using RowMatrixColType = decltype(B.col(i)); |
| using RowMatrixRowType = decltype(B.row(i)); |
| |
| // Vector and matrix col/row are valid Stl-style container. |
| VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true); |
| VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true); |
| VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true); |
| VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true); |
| VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true); |
| |
| // But the matrix itself is not a valid Stl-style container. |
| VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1); |
| VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1); |
| } |
| |
| EIGEN_DECLARE_TEST(stl_iterators) { |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1((test_stl_iterators<double, 2, 3>())); |
| CALL_SUBTEST_1((test_stl_iterators<float, 7, 5>())); |
| CALL_SUBTEST_1( |
| (test_stl_iterators<int, Dynamic, Dynamic>(internal::random<int>(5, 10), internal::random<int>(5, 10)))); |
| CALL_SUBTEST_1( |
| (test_stl_iterators<int, Dynamic, Dynamic>(internal::random<int>(10, 200), internal::random<int>(10, 200)))); |
| } |
| |
| CALL_SUBTEST_1((test_stl_container_detection<float, 1, 1>())); |
| CALL_SUBTEST_1((test_stl_container_detection<float, 5, 5>())); |
| } |