| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_FFT_MODULE_H |
| #define EIGEN_FFT_MODULE_H |
| |
| #include <complex> |
| #include <vector> |
| #include <map> |
| #include "../../Eigen/Core" |
| |
| /** |
| * \defgroup FFT_Module Fast Fourier Transform module |
| * |
| * \code |
| * #include <unsupported/Eigen/FFT> |
| * \endcode |
| * |
| * This module provides Fast Fourier transformation, with a configurable backend |
| * implementation. |
| * |
| * The default implementation is based on kissfft. It is a small, free, and |
| * reasonably efficient default. |
| * |
| * There are currently four implementation backend: |
| * |
| * - kissfft(https://github.com/mborgerding/kissfft) : Simple and not so fast, BSD-3-Clause. |
| * It is a mixed-radix Fast Fourier Transform based up on the principle, "Keep It Simple, Stupid." |
| * Notice that:kissfft fails to handle "atypically-sized" inputs(i.e., sizes with large factors),a workaround is using |
| * fftw or pocketfft. |
| * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size. |
| * - MKL (https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html) : fastest, free -- may be |
| * incompatible with Eigen in GPL form. |
| * - pocketfft (https://gitlab.mpcdf.mpg.de/mtr/pocketfft) : faster than kissfft, BSD 3-clause. |
| * It is a heavily modified implementation of FFTPack, with the following advantages: |
| * 1.strictly C++11 compliant |
| * 2.more accurate twiddle factor computation |
| * 3.very fast plan generation |
| * 4.worst case complexity for transform sizes with large prime factors is N*log(N), because Bluestein's algorithm is |
| * used for these cases |
| * |
| * \section FFTDesign Design |
| * |
| * The following design decisions were made concerning scaling and |
| * half-spectrum for real FFT. |
| * |
| * The intent is to facilitate generic programming and ease migrating code |
| * from Matlab/octave. |
| * We think the default behavior of Eigen/FFT should favor correctness and |
| * generality over speed. Of course, the caller should be able to "opt-out" from this |
| * behavior and get the speed increase if they want it. |
| * |
| * 1) %Scaling: |
| * Other libraries (FFTW,IMKL,KISSFFT) do not perform scaling, so there |
| * is a constant gain incurred after the forward&inverse transforms , so |
| * IFFT(FFT(x)) = Kx; this is done to avoid a vector-by-value multiply. |
| * The downside is that algorithms that worked correctly in Matlab/octave |
| * don't behave the same way once implemented in C++. |
| * |
| * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. |
| * |
| * 2) Real FFT half-spectrum |
| * Other libraries use only half the frequency spectrum (plus one extra |
| * sample for the Nyquist bin) for a real FFT, the other half is the |
| * conjugate-symmetric of the first half. This saves them a copy and some |
| * memory. The downside is the caller needs to have special logic for the |
| * number of bins in complex vs real. |
| * |
| * How Eigen/FFT differs: The full spectrum is returned from the forward |
| * transform. This facilitates generic template programming by obviating |
| * separate specializations for real vs complex. On the inverse |
| * transform, only half the spectrum is actually used if the output type is real. |
| */ |
| |
| #include "../../Eigen/src/Core/util/DisableStupidWarnings.h" |
| |
| // IWYU pragma: begin_exports |
| |
| #ifdef EIGEN_FFTW_DEFAULT |
| // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size |
| #include <fftw3.h> |
| #include "src/FFT/ei_fftw_impl.h" |
| namespace Eigen { |
| // template <typename T> typedef struct internal::fftw_impl default_fft_impl; this does not work |
| template <typename T> |
| struct default_fft_impl : public internal::fftw_impl<T> {}; |
| } // namespace Eigen |
| #elif defined EIGEN_MKL_DEFAULT |
| // intel Math Kernel Library: fastest, free -- may be incompatible with Eigen in GPL form |
| #include "src/FFT/ei_imklfft_impl.h" |
| namespace Eigen { |
| template <typename T> |
| struct default_fft_impl : public internal::imklfft::imklfft_impl<T> {}; |
| } // namespace Eigen |
| #elif defined EIGEN_POCKETFFT_DEFAULT |
| // internal::pocketfft_impl: a heavily modified implementation of FFTPack, with many advantages. |
| #include <pocketfft_hdronly.h> |
| #include "src/FFT/ei_pocketfft_impl.h" |
| namespace Eigen { |
| template <typename T> |
| struct default_fft_impl : public internal::pocketfft_impl<T> {}; |
| } // namespace Eigen |
| #else |
| // internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft |
| #include "src/FFT/ei_kissfft_impl.h" |
| namespace Eigen { |
| template <typename T> |
| struct default_fft_impl : public internal::kissfft_impl<T> {}; |
| } // namespace Eigen |
| #endif |
| |
| // IWYU pragma: end_exports |
| |
| namespace Eigen { |
| |
| // |
| template <typename T_SrcMat, typename T_FftIfc> |
| struct fft_fwd_proxy; |
| template <typename T_SrcMat, typename T_FftIfc> |
| struct fft_inv_proxy; |
| |
| namespace internal { |
| template <typename T_SrcMat, typename T_FftIfc> |
| struct traits<fft_fwd_proxy<T_SrcMat, T_FftIfc> > { |
| typedef typename T_SrcMat::PlainObject ReturnType; |
| }; |
| template <typename T_SrcMat, typename T_FftIfc> |
| struct traits<fft_inv_proxy<T_SrcMat, T_FftIfc> > { |
| typedef typename T_SrcMat::PlainObject ReturnType; |
| }; |
| } // namespace internal |
| |
| template <typename T_SrcMat, typename T_FftIfc> |
| struct fft_fwd_proxy : public ReturnByValue<fft_fwd_proxy<T_SrcMat, T_FftIfc> > { |
| typedef DenseIndex Index; |
| |
| fft_fwd_proxy(const T_SrcMat& src, T_FftIfc& fft, Index nfft) : m_src(src), m_ifc(fft), m_nfft(nfft) {} |
| |
| template <typename T_DestMat> |
| void evalTo(T_DestMat& dst) const; |
| |
| Index rows() const { return m_src.rows(); } |
| Index cols() const { return m_src.cols(); } |
| |
| protected: |
| const T_SrcMat& m_src; |
| T_FftIfc& m_ifc; |
| Index m_nfft; |
| }; |
| |
| template <typename T_SrcMat, typename T_FftIfc> |
| struct fft_inv_proxy : public ReturnByValue<fft_inv_proxy<T_SrcMat, T_FftIfc> > { |
| typedef DenseIndex Index; |
| |
| fft_inv_proxy(const T_SrcMat& src, T_FftIfc& fft, Index nfft) : m_src(src), m_ifc(fft), m_nfft(nfft) {} |
| |
| template <typename T_DestMat> |
| void evalTo(T_DestMat& dst) const; |
| |
| Index rows() const { return m_src.rows(); } |
| Index cols() const { return m_src.cols(); } |
| |
| protected: |
| const T_SrcMat& m_src; |
| T_FftIfc& m_ifc; |
| Index m_nfft; |
| }; |
| |
| template <typename T_Scalar, typename T_Impl = default_fft_impl<T_Scalar> > |
| class FFT { |
| public: |
| typedef T_Impl impl_type; |
| typedef DenseIndex Index; |
| typedef typename impl_type::Scalar Scalar; |
| typedef typename impl_type::Complex Complex; |
| |
| using Flag = int; |
| static constexpr Flag Default = 0; |
| static constexpr Flag Unscaled = 1; |
| static constexpr Flag HalfSpectrum = 2; |
| static constexpr Flag Speedy = 32767; |
| |
| FFT(const impl_type& impl = impl_type(), Flag flags = Default) : m_impl(impl), m_flag(flags) { |
| eigen_assert((flags == Default || flags == Unscaled || flags == HalfSpectrum || flags == Speedy) && |
| "invalid flags argument"); |
| } |
| |
| inline bool HasFlag(Flag f) const { return (m_flag & (int)f) == f; } |
| |
| inline void SetFlag(Flag f) { m_flag |= (int)f; } |
| |
| inline void ClearFlag(Flag f) { m_flag &= (~(int)f); } |
| |
| inline void fwd(Complex* dst, const Scalar* src, Index nfft) { |
| m_impl.fwd(dst, src, static_cast<int>(nfft)); |
| if (HasFlag(HalfSpectrum) == false) ReflectSpectrum(dst, nfft); |
| } |
| |
| inline void fwd(Complex* dst, const Complex* src, Index nfft) { m_impl.fwd(dst, src, static_cast<int>(nfft)); } |
| |
| #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT |
| inline void fwd2(Complex* dst, const Complex* src, int n0, int n1) { m_impl.fwd2(dst, src, n0, n1); } |
| #endif |
| |
| template <typename Input_> |
| inline void fwd(std::vector<Complex>& dst, const std::vector<Input_>& src) { |
| if (NumTraits<Input_>::IsComplex == 0 && HasFlag(HalfSpectrum)) |
| dst.resize((src.size() >> 1) + 1); // half the bins + Nyquist bin |
| else |
| dst.resize(src.size()); |
| fwd(&dst[0], &src[0], src.size()); |
| } |
| |
| template <typename InputDerived, typename ComplexDerived> |
| inline void fwd(MatrixBase<ComplexDerived>& dst, const MatrixBase<InputDerived>& src, Index nfft = -1) { |
| typedef typename ComplexDerived::Scalar dst_type; |
| typedef typename InputDerived::Scalar src_type; |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) |
| EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived, InputDerived) // size at compile-time |
| EIGEN_STATIC_ASSERT( |
| (internal::is_same<dst_type, Complex>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| EIGEN_STATIC_ASSERT(int(InputDerived::Flags) & int(ComplexDerived::Flags) & DirectAccessBit, |
| THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) |
| |
| if (nfft < 1) nfft = src.size(); |
| |
| Index dst_size = nfft; |
| if (NumTraits<src_type>::IsComplex == 0 && HasFlag(HalfSpectrum)) { |
| dst_size = (nfft >> 1) + 1; |
| } |
| dst.derived().resize(dst_size); |
| |
| if (src.innerStride() != 1 || src.size() < nfft) { |
| Matrix<src_type, 1, Dynamic> tmp; |
| if (src.size() < nfft) { |
| tmp.setZero(nfft); |
| tmp.block(0, 0, src.size(), 1) = src; |
| } else { |
| tmp = src; |
| } |
| if (dst.innerStride() != 1) { |
| Matrix<dst_type, 1, Dynamic> out(1, dst_size); |
| fwd(&out[0], &tmp[0], nfft); |
| dst.derived() = out; |
| } else { |
| fwd(&dst[0], &tmp[0], nfft); |
| } |
| } else { |
| if (dst.innerStride() != 1) { |
| Matrix<dst_type, 1, Dynamic> out(1, dst_size); |
| fwd(&out[0], &src[0], nfft); |
| dst.derived() = out; |
| } else { |
| fwd(&dst[0], &src[0], nfft); |
| } |
| } |
| } |
| |
| template <typename InputDerived> |
| inline fft_fwd_proxy<MatrixBase<InputDerived>, FFT<T_Scalar, T_Impl> > fwd(const MatrixBase<InputDerived>& src, |
| Index nfft = -1) { |
| return fft_fwd_proxy<MatrixBase<InputDerived>, FFT<T_Scalar, T_Impl> >(src, *this, nfft); |
| } |
| |
| template <typename InputDerived> |
| inline fft_inv_proxy<MatrixBase<InputDerived>, FFT<T_Scalar, T_Impl> > inv(const MatrixBase<InputDerived>& src, |
| Index nfft = -1) { |
| return fft_inv_proxy<MatrixBase<InputDerived>, FFT<T_Scalar, T_Impl> >(src, *this, nfft); |
| } |
| |
| inline void inv(Complex* dst, const Complex* src, Index nfft) { |
| m_impl.inv(dst, src, static_cast<int>(nfft)); |
| if (HasFlag(Unscaled) == false) scale(dst, Scalar(1. / nfft), nfft); // scale the time series |
| } |
| |
| inline void inv(Scalar* dst, const Complex* src, Index nfft) { |
| m_impl.inv(dst, src, static_cast<int>(nfft)); |
| if (HasFlag(Unscaled) == false) scale(dst, Scalar(1. / nfft), nfft); // scale the time series |
| } |
| |
| template <typename OutputDerived, typename ComplexDerived> |
| inline void inv(MatrixBase<OutputDerived>& dst, const MatrixBase<ComplexDerived>& src, Index nfft = -1) { |
| typedef typename ComplexDerived::Scalar src_type; |
| typedef typename ComplexDerived::RealScalar real_type; |
| typedef typename OutputDerived::Scalar dst_type; |
| const bool realfft = (NumTraits<dst_type>::IsComplex == 0); |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) |
| EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived, OutputDerived) // size at compile-time |
| EIGEN_STATIC_ASSERT( |
| (internal::is_same<src_type, Complex>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| EIGEN_STATIC_ASSERT(int(OutputDerived::Flags) & int(ComplexDerived::Flags) & DirectAccessBit, |
| THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) |
| |
| if (nfft < 1) { // automatic FFT size determination |
| if (realfft && HasFlag(HalfSpectrum)) |
| nfft = 2 * (src.size() - 1); // assume even fft size |
| else |
| nfft = src.size(); |
| } |
| dst.derived().resize(nfft); |
| |
| // check for nfft that does not fit the input data size |
| Index resize_input = (realfft && HasFlag(HalfSpectrum)) ? ((nfft / 2 + 1) - src.size()) : (nfft - src.size()); |
| |
| if (src.innerStride() != 1 || resize_input) { |
| // if the vector is strided, then we need to copy it to a packed temporary |
| Matrix<src_type, 1, Dynamic> tmp; |
| if (resize_input) { |
| size_t ncopy = (std::min)(src.size(), src.size() + resize_input); |
| tmp.setZero(src.size() + resize_input); |
| if (realfft && HasFlag(HalfSpectrum)) { |
| // pad at the Nyquist bin |
| tmp.head(ncopy) = src.head(ncopy); |
| tmp(ncopy - 1) = real(tmp(ncopy - 1)); // enforce real-only Nyquist bin |
| } else { |
| size_t nhead, ntail; |
| nhead = 1 + ncopy / 2 - 1; // range [0:pi) |
| ntail = ncopy / 2 - 1; // range (-pi:0) |
| tmp.head(nhead) = src.head(nhead); |
| tmp.tail(ntail) = src.tail(ntail); |
| if (resize_input < |
| 0) { // shrinking -- create the Nyquist bin as the average of the two bins that fold into it |
| tmp(nhead) = (src(nfft / 2) + src(src.size() - nfft / 2)) * real_type(.5); |
| } else { // expanding -- split the old Nyquist bin into two halves |
| tmp(nhead) = src(nhead) * real_type(.5); |
| tmp(tmp.size() - nhead) = tmp(nhead); |
| } |
| } |
| } else { |
| tmp = src; |
| } |
| |
| if (dst.innerStride() != 1) { |
| Matrix<dst_type, 1, Dynamic> out(1, nfft); |
| inv(&out[0], &tmp[0], nfft); |
| dst.derived() = out; |
| } else { |
| inv(&dst[0], &tmp[0], nfft); |
| } |
| } else { |
| if (dst.innerStride() != 1) { |
| Matrix<dst_type, 1, Dynamic> out(1, nfft); |
| inv(&out[0], &src[0], nfft); |
| dst.derived() = out; |
| } else { |
| inv(&dst[0], &src[0], nfft); |
| } |
| } |
| } |
| |
| template <typename Output_> |
| inline void inv(std::vector<Output_>& dst, const std::vector<Complex>& src, Index nfft = -1) { |
| if (nfft < 1) |
| nfft = (NumTraits<Output_>::IsComplex == 0 && HasFlag(HalfSpectrum)) ? 2 * (src.size() - 1) : src.size(); |
| dst.resize(nfft); |
| inv(&dst[0], &src[0], nfft); |
| } |
| |
| #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT |
| inline void inv2(Complex* dst, const Complex* src, int n0, int n1) { |
| m_impl.inv2(dst, src, n0, n1); |
| if (HasFlag(Unscaled) == false) scale(dst, 1. / (n0 * n1), n0 * n1); |
| } |
| #endif |
| |
| inline impl_type& impl() { return m_impl; } |
| |
| private: |
| template <typename T_Data> |
| inline void scale(T_Data* x, Scalar s, Index nx) { |
| #if 1 |
| for (int k = 0; k < nx; ++k) *x++ *= s; |
| #else |
| if (((ptrdiff_t)x) & 15) |
| Matrix<T_Data, Dynamic, 1>::Map(x, nx) *= s; |
| else |
| Matrix<T_Data, Dynamic, 1>::MapAligned(x, nx) *= s; |
| // Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s; |
| #endif |
| } |
| |
| inline void ReflectSpectrum(Complex* freq, Index nfft) { |
| // create the implicit right-half spectrum (conjugate-mirror of the left-half) |
| Index nhbins = (nfft >> 1) + 1; |
| for (Index k = nhbins; k < nfft; ++k) freq[k] = conj(freq[nfft - k]); |
| } |
| |
| impl_type m_impl; |
| int m_flag; |
| }; |
| |
| template <typename T_SrcMat, typename T_FftIfc> |
| template <typename T_DestMat> |
| inline void fft_fwd_proxy<T_SrcMat, T_FftIfc>::evalTo(T_DestMat& dst) const { |
| m_ifc.fwd(dst, m_src, m_nfft); |
| } |
| |
| template <typename T_SrcMat, typename T_FftIfc> |
| template <typename T_DestMat> |
| inline void fft_inv_proxy<T_SrcMat, T_FftIfc>::evalTo(T_DestMat& dst) const { |
| m_ifc.inv(dst, m_src, m_nfft); |
| } |
| |
| } // namespace Eigen |
| |
| #include "../../Eigen/src/Core/util/ReenableStupidWarnings.h" |
| |
| #endif |