| // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename Scalar> | 
 | void dogleg(const Matrix<Scalar, Dynamic, Dynamic> &qrfac, const Matrix<Scalar, Dynamic, 1> &diag, | 
 |             const Matrix<Scalar, Dynamic, 1> &qtb, Scalar delta, Matrix<Scalar, Dynamic, 1> &x) { | 
 |   using std::abs; | 
 |   using std::sqrt; | 
 |  | 
 |   typedef DenseIndex Index; | 
 |  | 
 |   /* Local variables */ | 
 |   Index i, j; | 
 |   Scalar sum, temp, alpha, bnorm; | 
 |   Scalar gnorm, qnorm; | 
 |   Scalar sgnorm; | 
 |  | 
 |   /* Function Body */ | 
 |   const Scalar epsmch = NumTraits<Scalar>::epsilon(); | 
 |   const Index n = qrfac.cols(); | 
 |   eigen_assert(n == qtb.size()); | 
 |   eigen_assert(n == x.size()); | 
 |   eigen_assert(n == diag.size()); | 
 |   Matrix<Scalar, Dynamic, 1> wa1(n), wa2(n); | 
 |  | 
 |   /* first, calculate the gauss-newton direction. */ | 
 |   for (j = n - 1; j >= 0; --j) { | 
 |     temp = qrfac(j, j); | 
 |     if (temp == 0.) { | 
 |       temp = epsmch * qrfac.col(j).head(j + 1).maxCoeff(); | 
 |       if (temp == 0.) temp = epsmch; | 
 |     } | 
 |     if (j == n - 1) | 
 |       x[j] = qtb[j] / temp; | 
 |     else | 
 |       x[j] = (qtb[j] - qrfac.row(j).tail(n - j - 1).dot(x.tail(n - j - 1))) / temp; | 
 |   } | 
 |  | 
 |   /* test whether the gauss-newton direction is acceptable. */ | 
 |   qnorm = diag.cwiseProduct(x).stableNorm(); | 
 |   if (qnorm <= delta) return; | 
 |  | 
 |   // TODO : this path is not tested by Eigen unit tests | 
 |  | 
 |   /* the gauss-newton direction is not acceptable. */ | 
 |   /* next, calculate the scaled gradient direction. */ | 
 |  | 
 |   wa1.fill(0.); | 
 |   for (j = 0; j < n; ++j) { | 
 |     wa1.tail(n - j) += qrfac.row(j).tail(n - j) * qtb[j]; | 
 |     wa1[j] /= diag[j]; | 
 |   } | 
 |  | 
 |   /* calculate the norm of the scaled gradient and test for */ | 
 |   /* the special case in which the scaled gradient is zero. */ | 
 |   gnorm = wa1.stableNorm(); | 
 |   sgnorm = 0.; | 
 |   alpha = delta / qnorm; | 
 |   if (gnorm == 0.) goto algo_end; | 
 |  | 
 |   /* calculate the point along the scaled gradient */ | 
 |   /* at which the quadratic is minimized. */ | 
 |   wa1.array() /= (diag * gnorm).array(); | 
 |   // TODO : once unit tests cover this part,: | 
 |   // wa2 = qrfac.template triangularView<Upper>() * wa1; | 
 |   for (j = 0; j < n; ++j) { | 
 |     sum = 0.; | 
 |     for (i = j; i < n; ++i) { | 
 |       sum += qrfac(j, i) * wa1[i]; | 
 |     } | 
 |     wa2[j] = sum; | 
 |   } | 
 |   temp = wa2.stableNorm(); | 
 |   sgnorm = gnorm / temp / temp; | 
 |  | 
 |   /* test whether the scaled gradient direction is acceptable. */ | 
 |   alpha = 0.; | 
 |   if (sgnorm >= delta) goto algo_end; | 
 |  | 
 |   /* the scaled gradient direction is not acceptable. */ | 
 |   /* finally, calculate the point along the dogleg */ | 
 |   /* at which the quadratic is minimized. */ | 
 |   bnorm = qtb.stableNorm(); | 
 |   temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta); | 
 |   temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + | 
 |          sqrt(numext::abs2(temp - delta / qnorm) + | 
 |               (1. - numext::abs2(delta / qnorm)) * (1. - numext::abs2(sgnorm / delta))); | 
 |   alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp; | 
 | algo_end: | 
 |  | 
 |   /* form appropriate convex combination of the gauss-newton */ | 
 |   /* direction and the scaled gradient direction. */ | 
 |   temp = (1. - alpha) * (std::min)(sgnorm, delta); | 
 |   x = temp * wa1 + alpha * x; | 
 | } | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen |