| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) Essex Edwards <essex.edwards@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #define EIGEN_RUNTIME_NO_MALLOC | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/NNLS> | 
 |  | 
 | /// Check that 'x' solves the NNLS optimization problem `min ||A*x-b|| s.t. 0 <= x`. | 
 | /// The \p tolerance parameter is the absolute tolerance on the gradient, A'*(A*x-b). | 
 | template <typename MatrixType, typename VectorB, typename VectorX, typename Scalar> | 
 | void verify_nnls_optimality(const MatrixType &A, const VectorB &b, const VectorX &x, const Scalar tolerance) { | 
 |   // The NNLS optimality conditions are: | 
 |   // | 
 |   // * 0 = A'*A*x - A'*b - lambda | 
 |   // * 0 <= x[i] \forall i | 
 |   // * 0 <= lambda[i] \forall i | 
 |   // * 0 = x[i]*lambda[i] \forall i | 
 |   // | 
 |   // we don't know lambda, but by assuming the first optimality condition is true, | 
 |   // we can derive it and then check the others conditions. | 
 |   const VectorX lambda = A.transpose() * (A * x - b); | 
 |  | 
 |   // NNLS solutions are EXACTLY not negative. | 
 |   VERIFY_LE(0, x.minCoeff()); | 
 |  | 
 |   // Exact lambda would be non-negative, but computed lambda might leak a little | 
 |   VERIFY_LE(-tolerance, lambda.minCoeff()); | 
 |  | 
 |   // x[i]*lambda[i] == 0 <~~> (x[i]==0) || (lambda[i] is small) | 
 |   VERIFY(((x.array() == Scalar(0)) || (lambda.array() <= tolerance)).all()); | 
 | } | 
 |  | 
 | template <typename MatrixType, typename VectorB, typename VectorX> | 
 | void test_nnls_known_solution(const MatrixType &A, const VectorB &b, const VectorX &x_expected) { | 
 |   using Scalar = typename MatrixType::Scalar; | 
 |  | 
 |   using std::sqrt; | 
 |   const Scalar tolerance = sqrt(Eigen::GenericNumTraits<Scalar>::epsilon()); | 
 |   Index max_iter = 5 * A.cols();  // A heuristic guess. | 
 |   NNLS<MatrixType> nnls(A, max_iter, tolerance); | 
 |   const VectorX x = nnls.solve(b); | 
 |  | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |   VERIFY_IS_APPROX(x, x_expected); | 
 |   verify_nnls_optimality(A, b, x, tolerance); | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void test_nnls_random_problem(const MatrixType &) { | 
 |   // | 
 |   // SETUP | 
 |   // | 
 |  | 
 |   Index cols = MatrixType::ColsAtCompileTime; | 
 |   if (cols == Dynamic) cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); | 
 |   Index rows = MatrixType::RowsAtCompileTime; | 
 |   if (rows == Dynamic) rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); | 
 |   VERIFY_LE(cols, rows);  // To have a unique LS solution: cols <= rows. | 
 |  | 
 |   // Make some sort of random test problem from a wide range of scales and condition numbers. | 
 |   using std::pow; | 
 |   using Scalar = typename MatrixType::Scalar; | 
 |   const Scalar sqrtConditionNumber = pow(Scalar(10), internal::random<Scalar>(Scalar(0), Scalar(2))); | 
 |   const Scalar scaleA = pow(Scalar(10), internal::random<Scalar>(Scalar(-3), Scalar(3))); | 
 |   const Scalar minSingularValue = scaleA / sqrtConditionNumber; | 
 |   const Scalar maxSingularValue = scaleA * sqrtConditionNumber; | 
 |   MatrixType A(rows, cols); | 
 |   generateRandomMatrixSvs(setupRangeSvs<Matrix<Scalar, Dynamic, 1>>(cols, minSingularValue, maxSingularValue), rows, | 
 |                           cols, A); | 
 |  | 
 |   // Make a random RHS also with a random scaling. | 
 |   using VectorB = decltype(A.col(0).eval()); | 
 |   const Scalar scaleB = pow(Scalar(10), internal::random<Scalar>(Scalar(-3), Scalar(3))); | 
 |   const VectorB b = scaleB * VectorB::Random(A.rows()); | 
 |  | 
 |   // | 
 |   // ACT | 
 |   // | 
 |  | 
 |   using Scalar = typename MatrixType::Scalar; | 
 |   using std::sqrt; | 
 |   const Scalar tolerance = | 
 |       sqrt(Eigen::GenericNumTraits<Scalar>::epsilon()) * b.cwiseAbs().maxCoeff() * A.cwiseAbs().maxCoeff(); | 
 |   Index max_iter = 5 * A.cols();  // A heuristic guess. | 
 |   NNLS<MatrixType> nnls(A, max_iter, tolerance); | 
 |   const typename NNLS<MatrixType>::SolutionVectorType &x = nnls.solve(b); | 
 |  | 
 |   // | 
 |   // VERIFY | 
 |   // | 
 |  | 
 |   // In fact, NNLS can fail on some problems, but they are rare in practice. | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |   verify_nnls_optimality(A, b, x, tolerance); | 
 | } | 
 |  | 
 | void test_nnls_handles_zero_rhs() { | 
 |   // | 
 |   // SETUP | 
 |   // | 
 |   const Index cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); | 
 |   const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); | 
 |   const MatrixXd A = MatrixXd::Random(rows, cols); | 
 |   const VectorXd b = VectorXd::Zero(rows); | 
 |  | 
 |   // | 
 |   // ACT | 
 |   // | 
 |   NNLS<MatrixXd> nnls(A); | 
 |   const VectorXd x = nnls.solve(b); | 
 |  | 
 |   // | 
 |   // VERIFY | 
 |   // | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |   VERIFY_LE(nnls.iterations(), 1);  // 0 or 1 would be be fine for an edge case like this. | 
 |   VERIFY_IS_EQUAL(x, VectorXd::Zero(cols)); | 
 | } | 
 |  | 
 | void test_nnls_handles_Mx0_matrix() { | 
 |   // | 
 |   // SETUP | 
 |   // | 
 |   const Index rows = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); | 
 |   const MatrixXd A(rows, 0); | 
 |   const VectorXd b = VectorXd::Random(rows); | 
 |  | 
 |   // | 
 |   // ACT | 
 |   // | 
 |   NNLS<MatrixXd> nnls(A); | 
 |   const VectorXd x = nnls.solve(b); | 
 |  | 
 |   // | 
 |   // VERIFY | 
 |   // | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |   VERIFY_LE(nnls.iterations(), 0); | 
 |   VERIFY_IS_EQUAL(x.size(), 0); | 
 | } | 
 |  | 
 | void test_nnls_handles_0x0_matrix() { | 
 |   // | 
 |   // SETUP | 
 |   // | 
 |   const MatrixXd A(0, 0); | 
 |   const VectorXd b(0); | 
 |  | 
 |   // | 
 |   // ACT | 
 |   // | 
 |   NNLS<MatrixXd> nnls(A); | 
 |   const VectorXd x = nnls.solve(b); | 
 |  | 
 |   // | 
 |   // VERIFY | 
 |   // | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |   VERIFY_LE(nnls.iterations(), 0); | 
 |   VERIFY_IS_EQUAL(x.size(), 0); | 
 | } | 
 |  | 
 | void test_nnls_handles_dependent_columns() { | 
 |   // | 
 |   // SETUP | 
 |   // | 
 |   const Index rank = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE / 2); | 
 |   const Index cols = 2 * rank; | 
 |   const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); | 
 |   const MatrixXd A = MatrixXd::Random(rows, rank) * MatrixXd::Random(rank, cols); | 
 |   const VectorXd b = VectorXd::Random(rows); | 
 |  | 
 |   // | 
 |   // ACT | 
 |   // | 
 |   const double tolerance = 1e-8; | 
 |   NNLS<MatrixXd> nnls(A); | 
 |   const VectorXd &x = nnls.solve(b); | 
 |  | 
 |   // | 
 |   // VERIFY | 
 |   // | 
 |   // What should happen when the input 'A' has dependent columns? | 
 |   // We might still succeed. Or we might not converge. | 
 |   // Either outcome is fine. If Success is indicated, | 
 |   // then 'x' must actually be a solution vector. | 
 |  | 
 |   if (nnls.info() == ComputationInfo::Success) { | 
 |     verify_nnls_optimality(A, b, x, tolerance); | 
 |   } | 
 | } | 
 |  | 
 | void test_nnls_handles_wide_matrix() { | 
 |   // | 
 |   // SETUP | 
 |   // | 
 |   const Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); | 
 |   const Index rows = internal::random<Index>(2, cols - 1); | 
 |   const MatrixXd A = MatrixXd::Random(rows, cols); | 
 |   const VectorXd b = VectorXd::Random(rows); | 
 |  | 
 |   // | 
 |   // ACT | 
 |   // | 
 |   const double tolerance = 1e-8; | 
 |   NNLS<MatrixXd> nnls(A); | 
 |   const VectorXd &x = nnls.solve(b); | 
 |  | 
 |   // | 
 |   // VERIFY | 
 |   // | 
 |   // What should happen when the input 'A' is wide? | 
 |   // The unconstrained least-squares problem has infinitely many solutions. | 
 |   // Subject the the non-negativity constraints, | 
 |   // the solution might actually be unique (e.g. it is [0,0,..,0]). | 
 |   // So, NNLS might succeed or it might fail. | 
 |   // Either outcome is fine. If Success is indicated, | 
 |   // then 'x' must actually be a solution vector. | 
 |  | 
 |   if (nnls.info() == ComputationInfo::Success) { | 
 |     verify_nnls_optimality(A, b, x, tolerance); | 
 |   } | 
 | } | 
 |  | 
 | // 4x2 problem, unconstrained solution positive | 
 | void test_nnls_known_1() { | 
 |   Matrix<double, 4, 2> A(4, 2); | 
 |   Matrix<double, 4, 1> b(4); | 
 |   Matrix<double, 2, 1> x(2); | 
 |   A << 1, 1, 2, 4, 3, 9, 4, 16; | 
 |   b << 0.6, 2.2, 4.8, 8.4; | 
 |   x << 0.1, 0.5; | 
 |  | 
 |   return test_nnls_known_solution(A, b, x); | 
 | } | 
 |  | 
 | // 4x3 problem, unconstrained solution positive | 
 | void test_nnls_known_2() { | 
 |   Matrix<double, 4, 3> A(4, 3); | 
 |   Matrix<double, 4, 1> b(4); | 
 |   Matrix<double, 3, 1> x(3); | 
 |  | 
 |   A << 1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64; | 
 |   b << 0.73, 3.24, 8.31, 16.72; | 
 |   x << 0.1, 0.5, 0.13; | 
 |  | 
 |   test_nnls_known_solution(A, b, x); | 
 | } | 
 |  | 
 | // Simple 4x4 problem, unconstrained solution non-negative | 
 | void test_nnls_known_3() { | 
 |   Matrix<double, 4, 4> A(4, 4); | 
 |   Matrix<double, 4, 1> b(4); | 
 |   Matrix<double, 4, 1> x(4); | 
 |  | 
 |   A << 1, 1, 1, 1, 2, 4, 8, 16, 3, 9, 27, 81, 4, 16, 64, 256; | 
 |   b << 0.73, 3.24, 8.31, 16.72; | 
 |   x << 0.1, 0.5, 0.13, 0; | 
 |  | 
 |   test_nnls_known_solution(A, b, x); | 
 | } | 
 |  | 
 | // Simple 4x3 problem, unconstrained solution non-negative | 
 | void test_nnls_known_4() { | 
 |   Matrix<double, 4, 3> A(4, 3); | 
 |   Matrix<double, 4, 1> b(4); | 
 |   Matrix<double, 3, 1> x(3); | 
 |  | 
 |   A << 1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64; | 
 |   b << 0.23, 1.24, 3.81, 8.72; | 
 |   x << 0.1, 0, 0.13; | 
 |  | 
 |   test_nnls_known_solution(A, b, x); | 
 | } | 
 |  | 
 | // Simple 4x3 problem, unconstrained solution indefinite | 
 | void test_nnls_known_5() { | 
 |   Matrix<double, 4, 3> A(4, 3); | 
 |   Matrix<double, 4, 1> b(4); | 
 |   Matrix<double, 3, 1> x(3); | 
 |  | 
 |   A << 1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64; | 
 |   b << 0.13, 0.84, 2.91, 7.12; | 
 |   // Solution obtained by original nnls() implementation in Fortran | 
 |   x << 0.0, 0.0, 0.1106544; | 
 |  | 
 |   test_nnls_known_solution(A, b, x); | 
 | } | 
 |  | 
 | void test_nnls_small_reference_problems() { | 
 |   test_nnls_known_1(); | 
 |   test_nnls_known_2(); | 
 |   test_nnls_known_3(); | 
 |   test_nnls_known_4(); | 
 |   test_nnls_known_5(); | 
 | } | 
 |  | 
 | void test_nnls_with_half_precision() { | 
 |   // The random matrix generation tools don't work with `half`, | 
 |   // so here's a simpler setup mostly just to check that NNLS compiles & runs with custom scalar types. | 
 |  | 
 |   using Mat = Matrix<half, 8, 2>; | 
 |   using VecB = Matrix<half, 8, 1>; | 
 |   using VecX = Matrix<half, 2, 1>; | 
 |   Mat A = Mat::Random();  // full-column rank with high probability. | 
 |   VecB b = VecB::Random(); | 
 |  | 
 |   NNLS<Mat> nnls(A, 20, half(1e-2f)); | 
 |   const VecX x = nnls.solve(b); | 
 |  | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |   verify_nnls_optimality(A, b, x, half(1e-1)); | 
 | } | 
 |  | 
 | void test_nnls_special_case_solves_in_zero_iterations() { | 
 |   // The particular NNLS algorithm that is implemented starts with all variables | 
 |   // in the active set. | 
 |   // This test builds a system where all constraints are active at the solution, | 
 |   // so that initial guess is already correct. | 
 |   // | 
 |   // If the implementation changes to another algorithm that does not have this property, | 
 |   // then this test will need to change (e.g. starting from all constraints inactive, | 
 |   // or using ADMM, or an interior point solver). | 
 |  | 
 |   const Index n = 10; | 
 |   const Index m = 3 * n; | 
 |   const VectorXd b = VectorXd::Random(m); | 
 |   // With high probability, this is full column rank, which we need for uniqueness. | 
 |   MatrixXd A = MatrixXd::Random(m, n); | 
 |   // Make every column of `A` such that adding it to the active set only /increases/ the objective, | 
 |   // this ensuring the NNLS solution is all zeros. | 
 |   const VectorXd alignment = -(A.transpose() * b).cwiseSign(); | 
 |   A = A * alignment.asDiagonal(); | 
 |  | 
 |   NNLS<MatrixXd> nnls(A); | 
 |   nnls.solve(b); | 
 |  | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |   VERIFY(nnls.iterations() == 0); | 
 | } | 
 |  | 
 | void test_nnls_special_case_solves_in_n_iterations() { | 
 |   // The particular NNLS algorithm that is implemented starts with all variables | 
 |   // in the active set and then adds one variable to the inactive set each iteration. | 
 |   // This test builds a system where all variables are inactive at the solution, | 
 |   // so it should take 'n' iterations to get there. | 
 |   // | 
 |   // If the implementation changes to another algorithm that does not have this property, | 
 |   // then this test will need to change (e.g. starting from all constraints inactive, | 
 |   // or using ADMM, or an interior point solver). | 
 |  | 
 |   const Index n = 10; | 
 |   const Index m = 3 * n; | 
 |   // With high probability, this is full column rank, which we need for uniqueness. | 
 |   const MatrixXd A = MatrixXd::Random(m, n); | 
 |   const VectorXd x = VectorXd::Random(n).cwiseAbs().array() + 1;  // all positive. | 
 |   const VectorXd b = A * x; | 
 |  | 
 |   NNLS<MatrixXd> nnls(A); | 
 |   nnls.solve(b); | 
 |  | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |   VERIFY(nnls.iterations() == n); | 
 | } | 
 |  | 
 | void test_nnls_returns_NoConvergence_when_maxIterations_is_too_low() { | 
 |   // Using the special case that takes `n` iterations, | 
 |   // from `test_nnls_special_case_solves_in_n_iterations`, | 
 |   // we can set max iterations too low and that should cause the solve to fail. | 
 |  | 
 |   const Index n = 10; | 
 |   const Index m = 3 * n; | 
 |   // With high probability, this is full column rank, which we need for uniqueness. | 
 |   const MatrixXd A = MatrixXd::Random(m, n); | 
 |   const VectorXd x = VectorXd::Random(n).cwiseAbs().array() + 1;  // all positive. | 
 |   const VectorXd b = A * x; | 
 |  | 
 |   NNLS<MatrixXd> nnls(A); | 
 |   const Index max_iters = n - 1; | 
 |   nnls.setMaxIterations(max_iters); | 
 |   nnls.solve(b); | 
 |  | 
 |   VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::NoConvergence); | 
 |   VERIFY(nnls.iterations() == max_iters); | 
 | } | 
 |  | 
 | void test_nnls_default_maxIterations_is_twice_column_count() { | 
 |   const Index cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); | 
 |   const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); | 
 |   const MatrixXd A = MatrixXd::Random(rows, cols); | 
 |  | 
 |   NNLS<MatrixXd> nnls(A); | 
 |  | 
 |   VERIFY_IS_EQUAL(nnls.maxIterations(), 2 * cols); | 
 | } | 
 |  | 
 | void test_nnls_does_not_allocate_during_solve() { | 
 |   const Index cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); | 
 |   const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); | 
 |   const MatrixXd A = MatrixXd::Random(rows, cols); | 
 |   const VectorXd b = VectorXd::Random(rows); | 
 |  | 
 |   NNLS<MatrixXd> nnls(A); | 
 |  | 
 |   internal::set_is_malloc_allowed(false); | 
 |   nnls.solve(b); | 
 |   internal::set_is_malloc_allowed(true); | 
 | } | 
 |  | 
 | void test_nnls_repeated_calls_to_compute_and_solve() { | 
 |   const Index cols2 = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); | 
 |   const Index rows2 = internal::random<Index>(cols2, EIGEN_TEST_MAX_SIZE); | 
 |   const MatrixXd A2 = MatrixXd::Random(rows2, cols2); | 
 |   const VectorXd b2 = VectorXd::Random(rows2); | 
 |  | 
 |   NNLS<MatrixXd> nnls; | 
 |  | 
 |   for (int i = 0; i < 4; ++i) { | 
 |     const Index cols = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE); | 
 |     const Index rows = internal::random<Index>(cols, EIGEN_TEST_MAX_SIZE); | 
 |     const MatrixXd A = MatrixXd::Random(rows, cols); | 
 |  | 
 |     nnls.compute(A); | 
 |     VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |  | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       const VectorXd b = VectorXd::Random(rows); | 
 |       const VectorXd x = nnls.solve(b); | 
 |       VERIFY_IS_EQUAL(nnls.info(), ComputationInfo::Success); | 
 |       verify_nnls_optimality(A, b, x, 1e-4); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(NNLS) { | 
 |   // Small matrices with known solutions: | 
 |   CALL_SUBTEST_1(test_nnls_small_reference_problems()); | 
 |   CALL_SUBTEST_1(test_nnls_handles_Mx0_matrix()); | 
 |   CALL_SUBTEST_1(test_nnls_handles_0x0_matrix()); | 
 |  | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     // Essential NNLS properties, across different types. | 
 |     CALL_SUBTEST_2(test_nnls_random_problem(MatrixXf())); | 
 |     CALL_SUBTEST_3(test_nnls_random_problem(MatrixXd())); | 
 |     CALL_SUBTEST_4(test_nnls_random_problem(Matrix<double, 12, 5>())); | 
 |     CALL_SUBTEST_5(test_nnls_with_half_precision()); | 
 |  | 
 |     // Robustness tests: | 
 |     CALL_SUBTEST_6(test_nnls_handles_zero_rhs()); | 
 |     CALL_SUBTEST_6(test_nnls_handles_dependent_columns()); | 
 |     CALL_SUBTEST_6(test_nnls_handles_wide_matrix()); | 
 |  | 
 |     // Properties specific to the implementation, | 
 |     // not NNLS in general. | 
 |     CALL_SUBTEST_7(test_nnls_special_case_solves_in_zero_iterations()); | 
 |     CALL_SUBTEST_7(test_nnls_special_case_solves_in_n_iterations()); | 
 |     CALL_SUBTEST_7(test_nnls_returns_NoConvergence_when_maxIterations_is_too_low()); | 
 |     CALL_SUBTEST_7(test_nnls_default_maxIterations_is_twice_column_count()); | 
 |     CALL_SUBTEST_8(test_nnls_repeated_calls_to_compute_and_solve()); | 
 |  | 
 |     // This test fails. It hits allocations in HouseholderSequence.h | 
 |     // test_nnls_does_not_allocate_during_solve(); | 
 |   } | 
 | } |