|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/AutoDiff> | 
|  |  | 
|  | template <typename Scalar> | 
|  | EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y) { | 
|  | using namespace std; | 
|  | //   return x+std::sin(y); | 
|  | EIGEN_ASM_COMMENT("mybegin"); | 
|  | // pow(float, int) promotes to pow(double, double) | 
|  | return x * 2 - 1 + static_cast<Scalar>(pow(1 + x, 2)) + 2 * sqrt(y * y + 0) - 4 * sin(0 + x) + 2 * cos(y + 0) - | 
|  | exp(Scalar(-0.5) * x * x + 0); | 
|  | // return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2; | 
|  | EIGEN_ASM_COMMENT("myend"); | 
|  | } | 
|  |  | 
|  | template <typename Vector> | 
|  | EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p) { | 
|  | typedef typename Vector::Scalar Scalar; | 
|  | return (p - Vector(Scalar(-1), Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p); | 
|  | } | 
|  |  | 
|  | template <typename Scalar_, int NX = Dynamic, int NY = Dynamic> | 
|  | struct TestFunc1 { | 
|  | typedef Scalar_ Scalar; | 
|  | enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; | 
|  | typedef Matrix<Scalar, InputsAtCompileTime, 1> InputType; | 
|  | typedef Matrix<Scalar, ValuesAtCompileTime, 1> ValueType; | 
|  | typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; | 
|  |  | 
|  | int m_inputs, m_values; | 
|  |  | 
|  | TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | 
|  | TestFunc1(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {} | 
|  |  | 
|  | int inputs() const { return m_inputs; } | 
|  | int values() const { return m_values; } | 
|  |  | 
|  | template <typename T> | 
|  | void operator()(const Matrix<T, InputsAtCompileTime, 1>& x, Matrix<T, ValuesAtCompileTime, 1>* _v) const { | 
|  | Matrix<T, ValuesAtCompileTime, 1>& v = *_v; | 
|  |  | 
|  | v[0] = 2 * x[0] * x[0] + x[0] * x[1]; | 
|  | v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1]; | 
|  | if (inputs() > 2) { | 
|  | v[0] += 0.5 * x[2]; | 
|  | v[1] += x[2]; | 
|  | } | 
|  | if (values() > 2) { | 
|  | v[2] = 3 * x[1] * x[0] * x[0]; | 
|  | } | 
|  | if (inputs() > 2 && values() > 2) v[2] *= x[2]; | 
|  | } | 
|  |  | 
|  | void operator()(const InputType& x, ValueType* v, JacobianType* _j) const { | 
|  | (*this)(x, v); | 
|  |  | 
|  | if (_j) { | 
|  | JacobianType& j = *_j; | 
|  |  | 
|  | j(0, 0) = 4 * x[0] + x[1]; | 
|  | j(1, 0) = 3 * x[1]; | 
|  |  | 
|  | j(0, 1) = x[0]; | 
|  | j(1, 1) = 3 * x[0] + 2 * 0.5 * x[1]; | 
|  |  | 
|  | if (inputs() > 2) { | 
|  | j(0, 2) = 0.5; | 
|  | j(1, 2) = 1; | 
|  | } | 
|  | if (values() > 2) { | 
|  | j(2, 0) = 3 * x[1] * 2 * x[0]; | 
|  | j(2, 1) = 3 * x[0] * x[0]; | 
|  | } | 
|  | if (inputs() > 2 && values() > 2) { | 
|  | j(2, 0) *= x[2]; | 
|  | j(2, 1) *= x[2]; | 
|  |  | 
|  | j(2, 2) = 3 * x[1] * x[0] * x[0]; | 
|  | j(2, 2) = 3 * x[1] * x[0] * x[0]; | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* Test functor for the C++11 features. */ | 
|  | template <typename Scalar> | 
|  | struct integratorFunctor { | 
|  | typedef Matrix<Scalar, 2, 1> InputType; | 
|  | typedef Matrix<Scalar, 2, 1> ValueType; | 
|  |  | 
|  | /* | 
|  | * Implementation starts here. | 
|  | */ | 
|  | integratorFunctor(const Scalar gain) : _gain(gain) {} | 
|  | integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {} | 
|  | const Scalar _gain; | 
|  |  | 
|  | template <typename T1, typename T2> | 
|  | void operator()(const T1& input, T2* output, const Scalar dt) const { | 
|  | T2& o = *output; | 
|  |  | 
|  | /* Integrator to test the AD. */ | 
|  | o[0] = input[0] + input[1] * dt * _gain; | 
|  | o[1] = input[1] * _gain; | 
|  | } | 
|  |  | 
|  | /* Only needed for the test */ | 
|  | template <typename T1, typename T2, typename T3> | 
|  | void operator()(const T1& input, T2* output, T3* jacobian, const Scalar dt) const { | 
|  | T2& o = *output; | 
|  |  | 
|  | /* Integrator to test the AD. */ | 
|  | o[0] = input[0] + input[1] * dt * _gain; | 
|  | o[1] = input[1] * _gain; | 
|  |  | 
|  | if (jacobian) { | 
|  | T3& j = *jacobian; | 
|  |  | 
|  | j(0, 0) = 1; | 
|  | j(0, 1) = dt * _gain; | 
|  | j(1, 0) = 0; | 
|  | j(1, 1) = _gain; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Func> | 
|  | void forward_jacobian_cpp11(const Func& f) { | 
|  | typedef typename Func::ValueType::Scalar Scalar; | 
|  | typedef typename Func::ValueType ValueType; | 
|  | typedef typename Func::InputType InputType; | 
|  | typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType; | 
|  |  | 
|  | InputType x = InputType::Random(InputType::RowsAtCompileTime); | 
|  | ValueType y, yref; | 
|  | JacobianType j, jref; | 
|  |  | 
|  | const Scalar dt = internal::random<double>(); | 
|  |  | 
|  | jref.setZero(); | 
|  | yref.setZero(); | 
|  | f(x, &yref, &jref, dt); | 
|  |  | 
|  | // std::cerr << "y, yref, jref: " << "\n"; | 
|  | // std::cerr << y.transpose() << "\n\n"; | 
|  | // std::cerr << yref << "\n\n"; | 
|  | // std::cerr << jref << "\n\n"; | 
|  |  | 
|  | AutoDiffJacobian<Func> autoj(f); | 
|  | autoj(x, &y, &j, dt); | 
|  |  | 
|  | // std::cerr << "y j (via autodiff): " << "\n"; | 
|  | // std::cerr << y.transpose() << "\n\n"; | 
|  | // std::cerr << j << "\n\n"; | 
|  |  | 
|  | VERIFY_IS_APPROX(y, yref); | 
|  | VERIFY_IS_APPROX(j, jref); | 
|  | } | 
|  |  | 
|  | template <typename Func> | 
|  | void forward_jacobian(const Func& f) { | 
|  | typename Func::InputType x = Func::InputType::Random(f.inputs()); | 
|  | typename Func::ValueType y(f.values()), yref(f.values()); | 
|  | typename Func::JacobianType j(f.values(), f.inputs()), jref(f.values(), f.inputs()); | 
|  |  | 
|  | jref.setZero(); | 
|  | yref.setZero(); | 
|  | f(x, &yref, &jref); | 
|  |  | 
|  | j.setZero(); | 
|  | y.setZero(); | 
|  | AutoDiffJacobian<Func> autoj(f); | 
|  | autoj(x, &y, &j); | 
|  |  | 
|  | VERIFY_IS_APPROX(y, yref); | 
|  | VERIFY_IS_APPROX(j, jref); | 
|  | } | 
|  |  | 
|  | // TODO also check actual derivatives! | 
|  | template <int> | 
|  | void test_autodiff_scalar() { | 
|  | Vector2f p = Vector2f::Random(); | 
|  | typedef AutoDiffScalar<Vector2f> AD; | 
|  | AD ax(p.x(), Vector2f::UnitX()); | 
|  | AD ay(p.y(), Vector2f::UnitY()); | 
|  | AD res = foo<AD>(ax, ay); | 
|  | VERIFY_IS_APPROX(res.value(), foo(p.x(), p.y())); | 
|  | } | 
|  |  | 
|  | // TODO also check actual derivatives! | 
|  | template <int> | 
|  | void test_autodiff_vector() { | 
|  | Vector2f p = Vector2f::Random(); | 
|  | typedef AutoDiffScalar<Vector2f> AD; | 
|  | typedef Matrix<AD, 2, 1> VectorAD; | 
|  | VectorAD ap = p.cast<AD>(); | 
|  | ap.x().derivatives() = Vector2f::UnitX(); | 
|  | ap.y().derivatives() = Vector2f::UnitY(); | 
|  |  | 
|  | AD res = foo<VectorAD>(ap); | 
|  | VERIFY_IS_APPROX(res.value(), foo(p)); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void test_autodiff_jacobian() { | 
|  | CALL_SUBTEST((forward_jacobian(TestFunc1<double, 2, 2>()))); | 
|  | CALL_SUBTEST((forward_jacobian(TestFunc1<double, 2, 3>()))); | 
|  | CALL_SUBTEST((forward_jacobian(TestFunc1<double, 3, 2>()))); | 
|  | CALL_SUBTEST((forward_jacobian(TestFunc1<double, 3, 3>()))); | 
|  | CALL_SUBTEST((forward_jacobian(TestFunc1<double>(3, 3)))); | 
|  | CALL_SUBTEST((forward_jacobian_cpp11(integratorFunctor<double>(10)))); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void test_autodiff_hessian() { | 
|  | typedef AutoDiffScalar<VectorXd> AD; | 
|  | typedef Matrix<AD, Eigen::Dynamic, 1> VectorAD; | 
|  | typedef AutoDiffScalar<VectorAD> ADD; | 
|  | typedef Matrix<ADD, Eigen::Dynamic, 1> VectorADD; | 
|  | VectorADD x(2); | 
|  | double s1 = internal::random<double>(), s2 = internal::random<double>(), s3 = internal::random<double>(), | 
|  | s4 = internal::random<double>(); | 
|  | x(0).value() = s1; | 
|  | x(1).value() = s2; | 
|  |  | 
|  | // set unit vectors for the derivative directions (partial derivatives of the input vector) | 
|  | x(0).derivatives().resize(2); | 
|  | x(0).derivatives().setZero(); | 
|  | x(0).derivatives()(0) = 1; | 
|  | x(1).derivatives().resize(2); | 
|  | x(1).derivatives().setZero(); | 
|  | x(1).derivatives()(1) = 1; | 
|  |  | 
|  | // repeat partial derivatives for the inner AutoDiffScalar | 
|  | x(0).value().derivatives() = VectorXd::Unit(2, 0); | 
|  | x(1).value().derivatives() = VectorXd::Unit(2, 1); | 
|  |  | 
|  | // set the hessian matrix to zero | 
|  | for (int idx = 0; idx < 2; idx++) { | 
|  | x(0).derivatives()(idx).derivatives() = VectorXd::Zero(2); | 
|  | x(1).derivatives()(idx).derivatives() = VectorXd::Zero(2); | 
|  | } | 
|  |  | 
|  | ADD y = sin(AD(s3) * x(0) + AD(s4) * x(1)); | 
|  |  | 
|  | VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value()); | 
|  | VERIFY_IS_APPROX(y.value().derivatives()(1), y.derivatives()(1).value()); | 
|  | VERIFY_IS_APPROX(y.value().derivatives()(0), s3 * std::cos(s1 * s3 + s2 * s4)); | 
|  | VERIFY_IS_APPROX(y.value().derivatives()(1), s4 * std::cos(s1 * s3 + s2 * s4)); | 
|  | VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1 * s3 + s2 * s4) * Vector2d(s3 * s3, s4 * s3)); | 
|  | VERIFY_IS_APPROX(y.derivatives()(1).derivatives(), -std::sin(s1 * s3 + s2 * s4) * Vector2d(s3 * s4, s4 * s4)); | 
|  |  | 
|  | ADD z = x(0) * x(1); | 
|  | VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0, 1)); | 
|  | VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1, 0)); | 
|  | } | 
|  |  | 
|  | double bug_1222() { | 
|  | typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; | 
|  | const double _cv1_3 = 1.0; | 
|  | const AD chi_3 = 1.0; | 
|  | // this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType> | 
|  | const AD denom = chi_3 + _cv1_3; | 
|  | return denom.value(); | 
|  | } | 
|  |  | 
|  | double bug_1223() { | 
|  | using std::min; | 
|  | typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD; | 
|  |  | 
|  | const double _cv1_3 = 1.0; | 
|  | const AD chi_3 = 1.0; | 
|  | const AD denom = 1.0; | 
|  |  | 
|  | // failed because implementation of min attempts to construct ADS<DerType&> via constructor AutoDiffScalar(const Real& | 
|  | // value) without initializing m_derivatives (which is a reference in this case) | 
|  | #define EIGEN_TEST_SPACE | 
|  | const AD t = min EIGEN_TEST_SPACE(denom / chi_3, 1.0); | 
|  |  | 
|  | const AD t2 = min EIGEN_TEST_SPACE(denom / (chi_3 * _cv1_3), 1.0); | 
|  |  | 
|  | return t.value() + t2.value(); | 
|  | } | 
|  |  | 
|  | // regression test for some compilation issues with specializations of ScalarBinaryOpTraits | 
|  | void bug_1260() { | 
|  | Matrix4d A = Matrix4d::Ones(); | 
|  | Vector4d v = Vector4d::Ones(); | 
|  | A* v; | 
|  | } | 
|  |  | 
|  | // check a compilation issue with numext::max | 
|  | double bug_1261() { | 
|  | typedef AutoDiffScalar<Matrix2d> AD; | 
|  | typedef Matrix<AD, 2, 1> VectorAD; | 
|  |  | 
|  | VectorAD v(0., 0.); | 
|  | const AD maxVal = v.maxCoeff(); | 
|  | const AD minVal = v.minCoeff(); | 
|  | return maxVal.value() + minVal.value(); | 
|  | } | 
|  |  | 
|  | double bug_1264() { | 
|  | typedef AutoDiffScalar<Vector2d> AD; | 
|  | const AD s = 0.; | 
|  | const Matrix<AD, 3, 1> v1(0., 0., 0.); | 
|  | const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1; | 
|  | return v2(0).value(); | 
|  | } | 
|  |  | 
|  | // check with expressions on constants | 
|  | double bug_1281() { | 
|  | int n = 2; | 
|  | typedef AutoDiffScalar<VectorXd> AD; | 
|  | const AD c = 1.; | 
|  | AD x0(2, n, 0); | 
|  | AD y1 = (AD(c) + AD(c)) * x0; | 
|  | y1 = x0 * (AD(c) + AD(c)); | 
|  | AD y2 = (-AD(c)) + x0; | 
|  | y2 = x0 + (-AD(c)); | 
|  | AD y3 = (AD(c) * (-AD(c)) + AD(c)) * x0; | 
|  | y3 = x0 * (AD(c) * (-AD(c)) + AD(c)); | 
|  | return (y1 + y2 + y3).value(); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(autodiff) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(test_autodiff_scalar<1>()); | 
|  | CALL_SUBTEST_2(test_autodiff_vector<1>()); | 
|  | CALL_SUBTEST_3(test_autodiff_jacobian<1>()); | 
|  | CALL_SUBTEST_4(test_autodiff_hessian<1>()); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_5(bug_1222()); | 
|  | CALL_SUBTEST_5(bug_1223()); | 
|  | CALL_SUBTEST_5(bug_1260()); | 
|  | CALL_SUBTEST_5(bug_1261()); | 
|  | CALL_SUBTEST_5(bug_1281()); | 
|  | } |