|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define EIGEN_TEST_NO_LONGDOUBLE | 
|  | #define EIGEN_TEST_NO_COMPLEX | 
|  |  | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
|  | #define EIGEN_USE_GPU | 
|  |  | 
|  | #include "main.h" | 
|  | #include "OffByOneScalar.h" | 
|  | #include <unsupported/Eigen/CXX11/Tensor> | 
|  |  | 
|  | #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h> | 
|  |  | 
|  | using Eigen::RowMajor; | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | // Context for evaluation on cpu | 
|  | struct CPUContext { | 
|  | CPUContext(const Eigen::Tensor<float, 3>& in1, Eigen::Tensor<float, 3>& in2, Eigen::Tensor<float, 3>& out) | 
|  | : in1_(in1), in2_(in2), out_(out), kernel_1d_(2), kernel_2d_(2, 2), kernel_3d_(2, 2, 2) { | 
|  | kernel_1d_(0) = 3.14f; | 
|  | kernel_1d_(1) = 2.7f; | 
|  |  | 
|  | kernel_2d_(0, 0) = 3.14f; | 
|  | kernel_2d_(1, 0) = 2.7f; | 
|  | kernel_2d_(0, 1) = 0.2f; | 
|  | kernel_2d_(1, 1) = 7.0f; | 
|  |  | 
|  | kernel_3d_(0, 0, 0) = 3.14f; | 
|  | kernel_3d_(0, 1, 0) = 2.7f; | 
|  | kernel_3d_(0, 0, 1) = 0.2f; | 
|  | kernel_3d_(0, 1, 1) = 7.0f; | 
|  | kernel_3d_(1, 0, 0) = -1.0f; | 
|  | kernel_3d_(1, 1, 0) = -0.3f; | 
|  | kernel_3d_(1, 0, 1) = -0.7f; | 
|  | kernel_3d_(1, 1, 1) = -0.5f; | 
|  | } | 
|  |  | 
|  | const Eigen::DefaultDevice& device() const { return cpu_device_; } | 
|  |  | 
|  | const Eigen::Tensor<float, 3>& in1() const { return in1_; } | 
|  | const Eigen::Tensor<float, 3>& in2() const { return in2_; } | 
|  | Eigen::Tensor<float, 3>& out() { return out_; } | 
|  | const Eigen::Tensor<float, 1>& kernel1d() const { return kernel_1d_; } | 
|  | const Eigen::Tensor<float, 2>& kernel2d() const { return kernel_2d_; } | 
|  | const Eigen::Tensor<float, 3>& kernel3d() const { return kernel_3d_; } | 
|  |  | 
|  | private: | 
|  | const Eigen::Tensor<float, 3>& in1_; | 
|  | const Eigen::Tensor<float, 3>& in2_; | 
|  | Eigen::Tensor<float, 3>& out_; | 
|  |  | 
|  | Eigen::Tensor<float, 1> kernel_1d_; | 
|  | Eigen::Tensor<float, 2> kernel_2d_; | 
|  | Eigen::Tensor<float, 3> kernel_3d_; | 
|  |  | 
|  | Eigen::DefaultDevice cpu_device_; | 
|  | }; | 
|  |  | 
|  | // Context for evaluation on GPU | 
|  | struct GPUContext { | 
|  | GPUContext(const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in1, Eigen::TensorMap<Eigen::Tensor<float, 3>>& in2, | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3>>& out) | 
|  | : in1_(in1), in2_(in2), out_(out), gpu_device_(&stream_) { | 
|  | assert(gpuMalloc((void**)(&kernel_1d_), 2 * sizeof(float)) == gpuSuccess); | 
|  | float kernel_1d_val[] = {3.14f, 2.7f}; | 
|  | assert(gpuMemcpy(kernel_1d_, kernel_1d_val, 2 * sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess); | 
|  |  | 
|  | assert(gpuMalloc((void**)(&kernel_2d_), 4 * sizeof(float)) == gpuSuccess); | 
|  | float kernel_2d_val[] = {3.14f, 2.7f, 0.2f, 7.0f}; | 
|  | assert(gpuMemcpy(kernel_2d_, kernel_2d_val, 4 * sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess); | 
|  |  | 
|  | assert(gpuMalloc((void**)(&kernel_3d_), 8 * sizeof(float)) == gpuSuccess); | 
|  | float kernel_3d_val[] = {3.14f, -1.0f, 2.7f, -0.3f, 0.2f, -0.7f, 7.0f, -0.5f}; | 
|  | assert(gpuMemcpy(kernel_3d_, kernel_3d_val, 8 * sizeof(float), gpuMemcpyHostToDevice) == gpuSuccess); | 
|  | } | 
|  | ~GPUContext() { | 
|  | assert(gpuFree(kernel_1d_) == gpuSuccess); | 
|  | assert(gpuFree(kernel_2d_) == gpuSuccess); | 
|  | assert(gpuFree(kernel_3d_) == gpuSuccess); | 
|  | } | 
|  |  | 
|  | const Eigen::GpuDevice& device() const { return gpu_device_; } | 
|  |  | 
|  | const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in1() const { return in1_; } | 
|  | const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in2() const { return in2_; } | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3>>& out() { return out_; } | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 1>> kernel1d() const { | 
|  | return Eigen::TensorMap<Eigen::Tensor<float, 1>>(kernel_1d_, 2); | 
|  | } | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 2>> kernel2d() const { | 
|  | return Eigen::TensorMap<Eigen::Tensor<float, 2>>(kernel_2d_, 2, 2); | 
|  | } | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3>> kernel3d() const { | 
|  | return Eigen::TensorMap<Eigen::Tensor<float, 3>>(kernel_3d_, 2, 2, 2); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in1_; | 
|  | const Eigen::TensorMap<Eigen::Tensor<float, 3>>& in2_; | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3>>& out_; | 
|  |  | 
|  | float* kernel_1d_; | 
|  | float* kernel_2d_; | 
|  | float* kernel_3d_; | 
|  |  | 
|  | Eigen::GpuStreamDevice stream_; | 
|  | Eigen::GpuDevice gpu_device_; | 
|  | }; | 
|  |  | 
|  | // The actual expression to evaluate | 
|  | template <typename Context> | 
|  | void test_contextual_eval(Context* context) { | 
|  | context->out().device(context->device()) = context->in1() + context->in2() * 3.14f + context->in1().constant(2.718f); | 
|  | } | 
|  |  | 
|  | template <typename Context> | 
|  | void test_forced_contextual_eval(Context* context) { | 
|  | context->out().device(context->device()) = | 
|  | (context->in1() + context->in2()).eval() * 3.14f + context->in1().constant(2.718f); | 
|  | } | 
|  |  | 
|  | template <typename Context> | 
|  | void test_compound_assignment(Context* context) { | 
|  | context->out().device(context->device()) = context->in1().constant(2.718f); | 
|  | context->out().device(context->device()) += context->in1() + context->in2() * 3.14f; | 
|  | } | 
|  |  | 
|  | template <typename Context> | 
|  | void test_contraction(Context* context) { | 
|  | Eigen::array<std::pair<int, int>, 2> dims; | 
|  | dims[0] = std::make_pair(1, 1); | 
|  | dims[1] = std::make_pair(2, 2); | 
|  |  | 
|  | Eigen::array<int, 2> shape{40, 50 * 70}; | 
|  |  | 
|  | Eigen::DSizes<int, 2> indices(0, 0); | 
|  | Eigen::DSizes<int, 2> sizes(40, 40); | 
|  |  | 
|  | context->out().reshape(shape).slice(indices, sizes).device(context->device()) = | 
|  | context->in1().contract(context->in2(), dims); | 
|  | } | 
|  |  | 
|  | template <typename Context> | 
|  | void test_1d_convolution(Context* context) { | 
|  | Eigen::DSizes<int, 3> indices(0, 0, 0); | 
|  | Eigen::DSizes<int, 3> sizes(40, 49, 70); | 
|  |  | 
|  | Eigen::array<int, 1> dims{1}; | 
|  | context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel1d(), dims); | 
|  | } | 
|  |  | 
|  | template <typename Context> | 
|  | void test_2d_convolution(Context* context) { | 
|  | Eigen::DSizes<int, 3> indices(0, 0, 0); | 
|  | Eigen::DSizes<int, 3> sizes(40, 49, 69); | 
|  |  | 
|  | Eigen::array<int, 2> dims{1, 2}; | 
|  | context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel2d(), dims); | 
|  | } | 
|  |  | 
|  | template <typename Context> | 
|  | void test_3d_convolution(Context* context) { | 
|  | Eigen::DSizes<int, 3> indices(0, 0, 0); | 
|  | Eigen::DSizes<int, 3> sizes(39, 49, 69); | 
|  |  | 
|  | Eigen::array<int, 3> dims{0, 1, 2}; | 
|  | context->out().slice(indices, sizes).device(context->device()) = context->in1().convolve(context->kernel3d(), dims); | 
|  | } | 
|  |  | 
|  | // Helper method to synchronize device. | 
|  | template <typename Device> | 
|  | void synchronize(Device& device) { /*nothing*/ | 
|  | } | 
|  | template <> | 
|  | void synchronize(Eigen::GpuDevice& device) { | 
|  | device.synchronize(); | 
|  | } | 
|  |  | 
|  | template <typename DataType, typename TensorDevice> | 
|  | void test_device_memory(const TensorDevice& device) { | 
|  | int count = 100; | 
|  | Eigen::array<int, 1> tensorRange{count}; | 
|  | Eigen::Tensor<DataType, 1> host(tensorRange); | 
|  | Eigen::Tensor<DataType, 1> expected(tensorRange); | 
|  | DataType* device_data = static_cast<DataType*>(device.allocate(count * sizeof(DataType))); | 
|  |  | 
|  | // memset | 
|  | const char byte_value = static_cast<char>(0xAB); | 
|  | device.memset(device_data, byte_value, count * sizeof(DataType)); | 
|  | device.memcpyDeviceToHost(host.data(), device_data, count * sizeof(DataType)); | 
|  | synchronize(device); | 
|  | memset(expected.data(), byte_value, count * sizeof(DataType)); | 
|  | for (size_t i = 0; i < count; i++) { | 
|  | VERIFY_IS_EQUAL(host(i), expected(i)); | 
|  | } | 
|  |  | 
|  | // fill | 
|  | DataType fill_value = DataType(7); | 
|  | std::fill_n(expected.data(), count, fill_value); | 
|  | device.fill(device_data, device_data + count, fill_value); | 
|  | device.memcpyDeviceToHost(host.data(), device_data, count * sizeof(DataType)); | 
|  | synchronize(device); | 
|  | for (int i = 0; i < count; i++) { | 
|  | VERIFY_IS_EQUAL(host(i), expected(i)); | 
|  | } | 
|  |  | 
|  | device.deallocate(device_data); | 
|  | } | 
|  |  | 
|  | void test_cpu() { | 
|  | Eigen::Tensor<float, 3> in1(40, 50, 70); | 
|  | Eigen::Tensor<float, 3> in2(40, 50, 70); | 
|  | Eigen::Tensor<float, 3> out(40, 50, 70); | 
|  |  | 
|  | in1 = in1.random() + in1.constant(10.0f); | 
|  | in2 = in2.random() + in2.constant(10.0f); | 
|  |  | 
|  | CPUContext context(in1, in2, out); | 
|  | test_contextual_eval(&context); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 50; ++j) { | 
|  | for (int k = 0; k < 70; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), in1(i, j, k) + in2(i, j, k) * 3.14f + 2.718f); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_forced_contextual_eval(&context); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 50; ++j) { | 
|  | for (int k = 0; k < 70; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) + in2(i, j, k)) * 3.14f + 2.718f); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_compound_assignment(&context); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 50; ++j) { | 
|  | for (int k = 0; k < 70; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), in1(i, j, k) + in2(i, j, k) * 3.14f + 2.718f); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_contraction(&context); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 40; ++j) { | 
|  | const float result = out(i, j, 0); | 
|  | float expected = 0; | 
|  | for (int k = 0; k < 50; ++k) { | 
|  | for (int l = 0; l < 70; ++l) { | 
|  | expected += in1(i, k, l) * in2(j, k, l); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(expected, result); | 
|  | } | 
|  | } | 
|  |  | 
|  | test_1d_convolution(&context); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 49; ++j) { | 
|  | for (int k = 0; k < 70; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_2d_convolution(&context); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 49; ++j) { | 
|  | for (int k = 0; k < 69; ++k) { | 
|  | const float result = out(i, j, k); | 
|  | const float expected = | 
|  | (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f) + (in1(i, j, k + 1) * 0.2f + in1(i, j + 1, k + 1) * 7.0f); | 
|  | if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) { | 
|  | continue; | 
|  | } | 
|  | VERIFY_IS_APPROX(expected, result); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_3d_convolution(&context); | 
|  | for (int i = 0; i < 39; ++i) { | 
|  | for (int j = 0; j < 49; ++j) { | 
|  | for (int k = 0; k < 69; ++k) { | 
|  | const float result = out(i, j, k); | 
|  | const float expected = | 
|  | (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f + in1(i, j, k + 1) * 0.2f + in1(i, j + 1, k + 1) * 7.0f) + | 
|  | (in1(i + 1, j, k) * -1.0f + in1(i + 1, j + 1, k) * -0.3f + in1(i + 1, j, k + 1) * -0.7f + | 
|  | in1(i + 1, j + 1, k + 1) * -0.5f); | 
|  | if (fabs(expected) < 1e-4f && fabs(result) < 1e-4f) { | 
|  | continue; | 
|  | } | 
|  | VERIFY_IS_APPROX(expected, result); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_device_memory<float>(context.device()); | 
|  | test_device_memory<OffByOneScalar<int>>(context.device()); | 
|  | } | 
|  |  | 
|  | void test_gpu() { | 
|  | Eigen::Tensor<float, 3> in1(40, 50, 70); | 
|  | Eigen::Tensor<float, 3> in2(40, 50, 70); | 
|  | Eigen::Tensor<float, 3> out(40, 50, 70); | 
|  | in1 = in1.random() + in1.constant(10.0f); | 
|  | in2 = in2.random() + in2.constant(10.0f); | 
|  |  | 
|  | std::size_t in1_bytes = in1.size() * sizeof(float); | 
|  | std::size_t in2_bytes = in2.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_in1; | 
|  | float* d_in2; | 
|  | float* d_out; | 
|  | gpuMalloc((void**)(&d_in1), in1_bytes); | 
|  | gpuMalloc((void**)(&d_in2), in2_bytes); | 
|  | gpuMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | gpuMemcpy(d_in1, in1.data(), in1_bytes, gpuMemcpyHostToDevice); | 
|  | gpuMemcpy(d_in2, in2.data(), in2_bytes, gpuMemcpyHostToDevice); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3>> gpu_in1(d_in1, 40, 50, 70); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3>> gpu_in2(d_in2, 40, 50, 70); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3>> gpu_out(d_out, 40, 50, 70); | 
|  |  | 
|  | GPUContext context(gpu_in1, gpu_in2, gpu_out); | 
|  | test_contextual_eval(&context); | 
|  | assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 50; ++j) { | 
|  | for (int k = 0; k < 70; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), in1(i, j, k) + in2(i, j, k) * 3.14f + 2.718f); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_forced_contextual_eval(&context); | 
|  | assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 50; ++j) { | 
|  | for (int k = 0; k < 70; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) + in2(i, j, k)) * 3.14f + 2.718f); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_compound_assignment(&context); | 
|  | assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 50; ++j) { | 
|  | for (int k = 0; k < 70; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), in1(i, j, k) + in2(i, j, k) * 3.14f + 2.718f); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_contraction(&context); | 
|  | assert(gpuMemcpy(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost) == gpuSuccess); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 40; ++j) { | 
|  | const float result = out(i, j, 0); | 
|  | float expected = 0; | 
|  | for (int k = 0; k < 50; ++k) { | 
|  | for (int l = 0; l < 70; ++l) { | 
|  | expected += in1(i, k, l) * in2(j, k, l); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(expected, result); | 
|  | } | 
|  | } | 
|  |  | 
|  | test_1d_convolution(&context); | 
|  | assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess); | 
|  | assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 49; ++j) { | 
|  | for (int k = 0; k < 70; ++k) { | 
|  | VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | test_2d_convolution(&context); | 
|  | assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess); | 
|  | assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess); | 
|  | for (int i = 0; i < 40; ++i) { | 
|  | for (int j = 0; j < 49; ++j) { | 
|  | for (int k = 0; k < 69; ++k) { | 
|  | const float result = out(i, j, k); | 
|  | const float expected = | 
|  | (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f + in1(i, j, k + 1) * 0.2f + in1(i, j + 1, k + 1) * 7.0f); | 
|  | VERIFY_IS_APPROX(expected, result); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if !defined(EIGEN_USE_HIP) | 
|  | // disable this test on the HIP platform | 
|  | // 3D tensor convolutions seem to hang on the HIP platform | 
|  |  | 
|  | test_3d_convolution(&context); | 
|  | assert(gpuMemcpyAsync(out.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, context.device().stream()) == gpuSuccess); | 
|  | assert(gpuStreamSynchronize(context.device().stream()) == gpuSuccess); | 
|  | for (int i = 0; i < 39; ++i) { | 
|  | for (int j = 0; j < 49; ++j) { | 
|  | for (int k = 0; k < 69; ++k) { | 
|  | const float result = out(i, j, k); | 
|  | const float expected = (in1(i, j, k) * 3.14f + in1(i, j + 1, k) * 2.7f + in1(i, j, k + 1) * 0.2f + | 
|  | in1(i, j + 1, k + 1) * 7.0f + in1(i + 1, j, k) * -1.0f + in1(i + 1, j + 1, k) * -0.3f + | 
|  | in1(i + 1, j, k + 1) * -0.7f + in1(i + 1, j + 1, k + 1) * -0.5f); | 
|  | VERIFY_IS_APPROX(expected, result); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | test_device_memory<float>(context.device()); | 
|  | test_device_memory<OffByOneScalar<int>>(context.device()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_device) { | 
|  | CALL_SUBTEST_1(test_cpu()); | 
|  | CALL_SUBTEST_2(test_gpu()); | 
|  | } |