| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/CXX11/Tensor> |
| |
| using Eigen::Tensor; |
| |
| template <int DataLayout> |
| static void test_fft_2D_golden() { |
| Tensor<float, 2, DataLayout> input(2, 3); |
| input(0, 0) = 1; |
| input(0, 1) = 2; |
| input(0, 2) = 3; |
| input(1, 0) = 4; |
| input(1, 1) = 5; |
| input(1, 2) = 6; |
| |
| array<ptrdiff_t, 2> fft; |
| fft[0] = 0; |
| fft[1] = 1; |
| |
| Tensor<std::complex<float>, 2, DataLayout> output = input.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); |
| |
| std::complex<float> output_golden[6]; // in ColMajor order |
| output_golden[0] = std::complex<float>(21, 0); |
| output_golden[1] = std::complex<float>(-9, 0); |
| output_golden[2] = std::complex<float>(-3, 1.73205); |
| output_golden[3] = std::complex<float>(0, 0); |
| output_golden[4] = std::complex<float>(-3, -1.73205); |
| output_golden[5] = std::complex<float>(0, 0); |
| |
| std::complex<float> c_offset = std::complex<float>(1.0, 1.0); |
| |
| if (DataLayout == ColMajor) { |
| VERIFY_IS_APPROX(output(0) + c_offset, output_golden[0] + c_offset); |
| VERIFY_IS_APPROX(output(1) + c_offset, output_golden[1] + c_offset); |
| VERIFY_IS_APPROX(output(2) + c_offset, output_golden[2] + c_offset); |
| VERIFY_IS_APPROX(output(3) + c_offset, output_golden[3] + c_offset); |
| VERIFY_IS_APPROX(output(4) + c_offset, output_golden[4] + c_offset); |
| VERIFY_IS_APPROX(output(5) + c_offset, output_golden[5] + c_offset); |
| } else { |
| VERIFY_IS_APPROX(output(0) + c_offset, output_golden[0] + c_offset); |
| VERIFY_IS_APPROX(output(1) + c_offset, output_golden[2] + c_offset); |
| VERIFY_IS_APPROX(output(2) + c_offset, output_golden[4] + c_offset); |
| VERIFY_IS_APPROX(output(3) + c_offset, output_golden[1] + c_offset); |
| VERIFY_IS_APPROX(output(4) + c_offset, output_golden[3] + c_offset); |
| VERIFY_IS_APPROX(output(5) + c_offset, output_golden[5] + c_offset); |
| } |
| } |
| |
| static void test_fft_complex_input_golden() { |
| Tensor<std::complex<float>, 1, ColMajor> input(5); |
| input(0) = std::complex<float>(1, 1); |
| input(1) = std::complex<float>(2, 2); |
| input(2) = std::complex<float>(3, 3); |
| input(3) = std::complex<float>(4, 4); |
| input(4) = std::complex<float>(5, 5); |
| |
| array<ptrdiff_t, 1> fft; |
| fft[0] = 0; |
| |
| Tensor<std::complex<float>, 1, ColMajor> forward_output_both_parts = input.fft<BothParts, FFT_FORWARD>(fft); |
| Tensor<std::complex<float>, 1, ColMajor> reverse_output_both_parts = input.fft<BothParts, FFT_REVERSE>(fft); |
| |
| Tensor<float, 1, ColMajor> forward_output_real_part = input.fft<RealPart, FFT_FORWARD>(fft); |
| Tensor<float, 1, ColMajor> reverse_output_real_part = input.fft<RealPart, FFT_REVERSE>(fft); |
| |
| Tensor<float, 1, ColMajor> forward_output_imag_part = input.fft<ImagPart, FFT_FORWARD>(fft); |
| Tensor<float, 1, ColMajor> reverse_output_imag_part = input.fft<ImagPart, FFT_REVERSE>(fft); |
| |
| VERIFY_IS_EQUAL(forward_output_both_parts.dimension(0), input.dimension(0)); |
| VERIFY_IS_EQUAL(reverse_output_both_parts.dimension(0), input.dimension(0)); |
| |
| VERIFY_IS_EQUAL(forward_output_real_part.dimension(0), input.dimension(0)); |
| VERIFY_IS_EQUAL(reverse_output_real_part.dimension(0), input.dimension(0)); |
| |
| VERIFY_IS_EQUAL(forward_output_imag_part.dimension(0), input.dimension(0)); |
| VERIFY_IS_EQUAL(reverse_output_imag_part.dimension(0), input.dimension(0)); |
| |
| std::complex<float> forward_golden_result[5]; |
| std::complex<float> reverse_golden_result[5]; |
| |
| forward_golden_result[0] = std::complex<float>(15.000000000000000, +15.000000000000000); |
| forward_golden_result[1] = std::complex<float>(-5.940954801177935, +0.940954801177934); |
| forward_golden_result[2] = std::complex<float>(-3.312299240582266, -1.687700759417735); |
| forward_golden_result[3] = std::complex<float>(-1.687700759417735, -3.312299240582266); |
| forward_golden_result[4] = std::complex<float>(0.940954801177934, -5.940954801177935); |
| |
| reverse_golden_result[0] = std::complex<float>(3.000000000000000, +3.000000000000000); |
| reverse_golden_result[1] = std::complex<float>(0.188190960235587, -1.188190960235587); |
| reverse_golden_result[2] = std::complex<float>(-0.337540151883547, -0.662459848116453); |
| reverse_golden_result[3] = std::complex<float>(-0.662459848116453, -0.337540151883547); |
| reverse_golden_result[4] = std::complex<float>(-1.188190960235587, +0.188190960235587); |
| |
| for (int i = 0; i < 5; ++i) { |
| VERIFY_IS_APPROX(forward_output_both_parts(i), forward_golden_result[i]); |
| VERIFY_IS_APPROX(forward_output_real_part(i), forward_golden_result[i].real()); |
| VERIFY_IS_APPROX(forward_output_imag_part(i), forward_golden_result[i].imag()); |
| } |
| |
| for (int i = 0; i < 5; ++i) { |
| VERIFY_IS_APPROX(reverse_output_both_parts(i), reverse_golden_result[i]); |
| VERIFY_IS_APPROX(reverse_output_real_part(i), reverse_golden_result[i].real()); |
| VERIFY_IS_APPROX(reverse_output_imag_part(i), reverse_golden_result[i].imag()); |
| } |
| } |
| |
| static void test_fft_real_input_golden() { |
| Tensor<float, 1, ColMajor> input(5); |
| input(0) = 1.0; |
| input(1) = 2.0; |
| input(2) = 3.0; |
| input(3) = 4.0; |
| input(4) = 5.0; |
| |
| array<ptrdiff_t, 1> fft; |
| fft[0] = 0; |
| |
| Tensor<std::complex<float>, 1, ColMajor> forward_output_both_parts = input.fft<BothParts, FFT_FORWARD>(fft); |
| Tensor<std::complex<float>, 1, ColMajor> reverse_output_both_parts = input.fft<BothParts, FFT_REVERSE>(fft); |
| |
| Tensor<float, 1, ColMajor> forward_output_real_part = input.fft<RealPart, FFT_FORWARD>(fft); |
| Tensor<float, 1, ColMajor> reverse_output_real_part = input.fft<RealPart, FFT_REVERSE>(fft); |
| |
| Tensor<float, 1, ColMajor> forward_output_imag_part = input.fft<ImagPart, FFT_FORWARD>(fft); |
| Tensor<float, 1, ColMajor> reverse_output_imag_part = input.fft<ImagPart, FFT_REVERSE>(fft); |
| |
| VERIFY_IS_EQUAL(forward_output_both_parts.dimension(0), input.dimension(0)); |
| VERIFY_IS_EQUAL(reverse_output_both_parts.dimension(0), input.dimension(0)); |
| |
| VERIFY_IS_EQUAL(forward_output_real_part.dimension(0), input.dimension(0)); |
| VERIFY_IS_EQUAL(reverse_output_real_part.dimension(0), input.dimension(0)); |
| |
| VERIFY_IS_EQUAL(forward_output_imag_part.dimension(0), input.dimension(0)); |
| VERIFY_IS_EQUAL(reverse_output_imag_part.dimension(0), input.dimension(0)); |
| |
| std::complex<float> forward_golden_result[5]; |
| std::complex<float> reverse_golden_result[5]; |
| |
| forward_golden_result[0] = std::complex<float>(15, 0); |
| forward_golden_result[1] = std::complex<float>(-2.5, +3.44095480117793); |
| forward_golden_result[2] = std::complex<float>(-2.5, +0.81229924058227); |
| forward_golden_result[3] = std::complex<float>(-2.5, -0.81229924058227); |
| forward_golden_result[4] = std::complex<float>(-2.5, -3.44095480117793); |
| |
| reverse_golden_result[0] = std::complex<float>(3.0, 0); |
| reverse_golden_result[1] = std::complex<float>(-0.5, -0.688190960235587); |
| reverse_golden_result[2] = std::complex<float>(-0.5, -0.162459848116453); |
| reverse_golden_result[3] = std::complex<float>(-0.5, +0.162459848116453); |
| reverse_golden_result[4] = std::complex<float>(-0.5, +0.688190960235587); |
| |
| std::complex<float> c_offset(1.0, 1.0); |
| float r_offset = 1.0; |
| |
| for (int i = 0; i < 5; ++i) { |
| VERIFY_IS_APPROX(forward_output_both_parts(i) + c_offset, forward_golden_result[i] + c_offset); |
| VERIFY_IS_APPROX(forward_output_real_part(i) + r_offset, forward_golden_result[i].real() + r_offset); |
| VERIFY_IS_APPROX(forward_output_imag_part(i) + r_offset, forward_golden_result[i].imag() + r_offset); |
| } |
| |
| for (int i = 0; i < 5; ++i) { |
| VERIFY_IS_APPROX(reverse_output_both_parts(i) + c_offset, reverse_golden_result[i] + c_offset); |
| VERIFY_IS_APPROX(reverse_output_real_part(i) + r_offset, reverse_golden_result[i].real() + r_offset); |
| VERIFY_IS_APPROX(reverse_output_imag_part(i) + r_offset, reverse_golden_result[i].imag() + r_offset); |
| } |
| } |
| |
| template <int DataLayout, typename RealScalar, bool isComplexInput, int FFTResultType, int FFTDirection, int TensorRank> |
| static void test_fft_real_input_energy() { |
| Eigen::DSizes<ptrdiff_t, TensorRank> dimensions; |
| ptrdiff_t total_size = 1; |
| for (int i = 0; i < TensorRank; ++i) { |
| dimensions[i] = rand() % 20 + 1; |
| total_size *= dimensions[i]; |
| } |
| const DSizes<ptrdiff_t, TensorRank> arr = dimensions; |
| |
| typedef std::conditional_t<isComplexInput == true, std::complex<RealScalar>, RealScalar> InputScalar; |
| |
| Tensor<InputScalar, TensorRank, DataLayout> input; |
| input.resize(arr); |
| input.setRandom(); |
| |
| array<ptrdiff_t, TensorRank> fft; |
| for (int i = 0; i < TensorRank; ++i) { |
| fft[i] = i; |
| } |
| |
| typedef std::conditional_t<FFTResultType == Eigen::BothParts, std::complex<RealScalar>, RealScalar> OutputScalar; |
| Tensor<OutputScalar, TensorRank, DataLayout> output; |
| output = input.template fft<FFTResultType, FFTDirection>(fft); |
| |
| for (int i = 0; i < TensorRank; ++i) { |
| VERIFY_IS_EQUAL(output.dimension(i), input.dimension(i)); |
| } |
| |
| RealScalar energy_original = 0.0; |
| RealScalar energy_after_fft = 0.0; |
| |
| for (int i = 0; i < total_size; ++i) { |
| energy_original += numext::abs2(input(i)); |
| } |
| |
| for (int i = 0; i < total_size; ++i) { |
| energy_after_fft += numext::abs2(output(i)); |
| } |
| |
| if (FFTDirection == FFT_FORWARD) { |
| VERIFY_IS_APPROX(energy_original, energy_after_fft / total_size); |
| } else { |
| VERIFY_IS_APPROX(energy_original, energy_after_fft * total_size); |
| } |
| } |
| |
| template <typename RealScalar> |
| static void test_fft_non_power_of_2_round_trip(int exponent) { |
| int n = (1 << exponent) + 1; |
| |
| Eigen::DSizes<ptrdiff_t, 1> dimensions; |
| dimensions[0] = n; |
| const DSizes<ptrdiff_t, 1> arr = dimensions; |
| Tensor<RealScalar, 1, ColMajor, ptrdiff_t> input; |
| |
| input.resize(arr); |
| input.setRandom(); |
| |
| array<int, 1> fft; |
| fft[0] = 0; |
| |
| Tensor<std::complex<RealScalar>, 1, ColMajor> forward = input.template fft<BothParts, FFT_FORWARD>(fft); |
| |
| Tensor<RealScalar, 1, ColMajor, ptrdiff_t> output = forward.template fft<RealPart, FFT_REVERSE>(fft); |
| |
| for (int i = 0; i < n; ++i) { |
| RealScalar tol = test_precision<RealScalar>() * (std::abs(input[i]) + std::abs(output[i]) + 1); |
| VERIFY_IS_APPROX_OR_LESS_THAN(std::abs(input[i] - output[i]), tol); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(cxx11_tensor_fft) { |
| test_fft_complex_input_golden(); |
| test_fft_real_input_golden(); |
| |
| test_fft_2D_golden<ColMajor>(); |
| test_fft_2D_golden<RowMajor>(); |
| |
| test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 1>(); |
| test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 1>(); |
| test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 1>(); |
| test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 1>(); |
| |
| test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 2>(); |
| test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 2>(); |
| test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 2>(); |
| test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 2>(); |
| |
| test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 3>(); |
| test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 3>(); |
| test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 3>(); |
| test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 3>(); |
| |
| test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 4>(); |
| test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 4>(); |
| test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 4>(); |
| test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 4>(); |
| |
| test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 1>(); |
| test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 1>(); |
| test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 1>(); |
| test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 1>(); |
| |
| test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 2>(); |
| test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 2>(); |
| test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 2>(); |
| test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 2>(); |
| |
| test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 3>(); |
| test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 3>(); |
| test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 3>(); |
| test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 3>(); |
| |
| test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 4>(); |
| test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 4>(); |
| test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 4>(); |
| test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 4>(); |
| |
| test_fft_non_power_of_2_round_trip<float>(7); |
| test_fft_non_power_of_2_round_trip<double>(7); |
| } |