|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de> | 
|  | // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de> | 
|  | // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_1 | 
|  |  | 
|  | #include "sparse.h" | 
|  | #include <Eigen/SparseExtra> | 
|  | #include <Eigen/KroneckerProduct> | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void check_dimension(const MatrixType& ab, const int rows, const int cols) { | 
|  | VERIFY_IS_EQUAL(ab.rows(), rows); | 
|  | VERIFY_IS_EQUAL(ab.cols(), cols); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void check_kronecker_product(const MatrixType& ab) { | 
|  | VERIFY_IS_EQUAL(ab.rows(), 6); | 
|  | VERIFY_IS_EQUAL(ab.cols(), 6); | 
|  | VERIFY_IS_EQUAL(ab.size(), 36); | 
|  | VERIFY_IS_APPROX(ab.coeff(0, 0), -0.4017367630386106); | 
|  | VERIFY_IS_APPROX(ab.coeff(0, 1), 0.1056863433932735); | 
|  | VERIFY_IS_APPROX(ab.coeff(0, 2), -0.7255206194554212); | 
|  | VERIFY_IS_APPROX(ab.coeff(0, 3), 0.1908653336744706); | 
|  | VERIFY_IS_APPROX(ab.coeff(0, 4), 0.350864567234111); | 
|  | VERIFY_IS_APPROX(ab.coeff(0, 5), -0.0923032108308013); | 
|  | VERIFY_IS_APPROX(ab.coeff(1, 0), 0.415417514804677); | 
|  | VERIFY_IS_APPROX(ab.coeff(1, 1), -0.2369227701722048); | 
|  | VERIFY_IS_APPROX(ab.coeff(1, 2), 0.7502275131458511); | 
|  | VERIFY_IS_APPROX(ab.coeff(1, 3), -0.4278731019742696); | 
|  | VERIFY_IS_APPROX(ab.coeff(1, 4), -0.3628129162264507); | 
|  | VERIFY_IS_APPROX(ab.coeff(1, 5), 0.2069210808481275); | 
|  | VERIFY_IS_APPROX(ab.coeff(2, 0), 0.05465890160863986); | 
|  | VERIFY_IS_APPROX(ab.coeff(2, 1), -0.2634092511419858); | 
|  | VERIFY_IS_APPROX(ab.coeff(2, 2), 0.09871180285793758); | 
|  | VERIFY_IS_APPROX(ab.coeff(2, 3), -0.4757066334017702); | 
|  | VERIFY_IS_APPROX(ab.coeff(2, 4), -0.04773740823058334); | 
|  | VERIFY_IS_APPROX(ab.coeff(2, 5), 0.2300535609645254); | 
|  | VERIFY_IS_APPROX(ab.coeff(3, 0), -0.8172945853260133); | 
|  | VERIFY_IS_APPROX(ab.coeff(3, 1), 0.2150086428359221); | 
|  | VERIFY_IS_APPROX(ab.coeff(3, 2), 0.5825113847292743); | 
|  | VERIFY_IS_APPROX(ab.coeff(3, 3), -0.1532433770097174); | 
|  | VERIFY_IS_APPROX(ab.coeff(3, 4), -0.329383387282399); | 
|  | VERIFY_IS_APPROX(ab.coeff(3, 5), 0.08665207912033064); | 
|  | VERIFY_IS_APPROX(ab.coeff(4, 0), 0.8451267514863225); | 
|  | VERIFY_IS_APPROX(ab.coeff(4, 1), -0.481996458918977); | 
|  | VERIFY_IS_APPROX(ab.coeff(4, 2), -0.6023482390791535); | 
|  | VERIFY_IS_APPROX(ab.coeff(4, 3), 0.3435339347164565); | 
|  | VERIFY_IS_APPROX(ab.coeff(4, 4), 0.3406002157428891); | 
|  | VERIFY_IS_APPROX(ab.coeff(4, 5), -0.1942526344200915); | 
|  | VERIFY_IS_APPROX(ab.coeff(5, 0), 0.1111982482925399); | 
|  | VERIFY_IS_APPROX(ab.coeff(5, 1), -0.5358806424754169); | 
|  | VERIFY_IS_APPROX(ab.coeff(5, 2), -0.07925446559335647); | 
|  | VERIFY_IS_APPROX(ab.coeff(5, 3), 0.3819388757769038); | 
|  | VERIFY_IS_APPROX(ab.coeff(5, 4), 0.04481475387219876); | 
|  | VERIFY_IS_APPROX(ab.coeff(5, 5), -0.2159688616158057); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void check_sparse_kronecker_product(const MatrixType& ab) { | 
|  | VERIFY_IS_EQUAL(ab.rows(), 12); | 
|  | VERIFY_IS_EQUAL(ab.cols(), 10); | 
|  | VERIFY_IS_EQUAL(ab.nonZeros(), 3 * 2); | 
|  | VERIFY_IS_APPROX(ab.coeff(3, 0), -0.04); | 
|  | VERIFY_IS_APPROX(ab.coeff(5, 1), 0.05); | 
|  | VERIFY_IS_APPROX(ab.coeff(0, 6), -0.08); | 
|  | VERIFY_IS_APPROX(ab.coeff(2, 7), 0.10); | 
|  | VERIFY_IS_APPROX(ab.coeff(6, 8), 0.12); | 
|  | VERIFY_IS_APPROX(ab.coeff(8, 9), -0.15); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(kronecker_product) { | 
|  | // DM = dense matrix; SM = sparse matrix | 
|  |  | 
|  | Matrix<double, 2, 3> DM_a; | 
|  | SparseMatrix<double> SM_a(2, 3); | 
|  | SM_a.insert(0, 0) = DM_a.coeffRef(0, 0) = -0.4461540300782201; | 
|  | SM_a.insert(0, 1) = DM_a.coeffRef(0, 1) = -0.8057364375283049; | 
|  | SM_a.insert(0, 2) = DM_a.coeffRef(0, 2) = 0.3896572459516341; | 
|  | SM_a.insert(1, 0) = DM_a.coeffRef(1, 0) = -0.9076572187376921; | 
|  | SM_a.insert(1, 1) = DM_a.coeffRef(1, 1) = 0.6469156566545853; | 
|  | SM_a.insert(1, 2) = DM_a.coeffRef(1, 2) = -0.3658010398782789; | 
|  |  | 
|  | MatrixXd DM_b(3, 2); | 
|  | SparseMatrix<double> SM_b(3, 2); | 
|  | SM_b.insert(0, 0) = DM_b.coeffRef(0, 0) = 0.9004440976767099; | 
|  | SM_b.insert(0, 1) = DM_b.coeffRef(0, 1) = -0.2368830858139832; | 
|  | SM_b.insert(1, 0) = DM_b.coeffRef(1, 0) = -0.9311078389941825; | 
|  | SM_b.insert(1, 1) = DM_b.coeffRef(1, 1) = 0.5310335762980047; | 
|  | SM_b.insert(2, 0) = DM_b.coeffRef(2, 0) = -0.1225112806872035; | 
|  | SM_b.insert(2, 1) = DM_b.coeffRef(2, 1) = 0.5903998022741264; | 
|  |  | 
|  | SparseMatrix<double, RowMajor> SM_row_a(SM_a), SM_row_b(SM_b); | 
|  |  | 
|  | // test DM_fixedSize = kroneckerProduct(DM_block,DM) | 
|  | Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2, 3>(), DM_b); | 
|  |  | 
|  | CALL_SUBTEST(check_kronecker_product(DM_fix_ab)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a.topLeftCorner<2, 3>(), DM_b))); | 
|  |  | 
|  | for (int i = 0; i < DM_fix_ab.rows(); ++i) | 
|  | for (int j = 0; j < DM_fix_ab.cols(); ++j) | 
|  | VERIFY_IS_APPROX(kroneckerProduct(DM_a, DM_b).coeff(i, j), DM_fix_ab(i, j)); | 
|  |  | 
|  | // test DM_block = kroneckerProduct(DM,DM) | 
|  | MatrixXd DM_block_ab(10, 15); | 
|  | DM_block_ab.block<6, 6>(2, 5) = kroneckerProduct(DM_a, DM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6, 6>(2, 5))); | 
|  |  | 
|  | // test DM = kroneckerProduct(DM,DM) | 
|  | MatrixXd DM_ab = kroneckerProduct(DM_a, DM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(DM_ab)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a, DM_b))); | 
|  |  | 
|  | // test SM = kroneckerProduct(SM,DM) | 
|  | SparseMatrix<double> SM_ab = kroneckerProduct(SM_a, DM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab)); | 
|  | SparseMatrix<double, RowMajor> SM_ab2 = kroneckerProduct(SM_a, DM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab2)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a, DM_b))); | 
|  |  | 
|  | // test SM = kroneckerProduct(DM,SM) | 
|  | SM_ab.setZero(); | 
|  | SM_ab.insert(0, 0) = 37.0; | 
|  | SM_ab = kroneckerProduct(DM_a, SM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab)); | 
|  | SM_ab2.setZero(); | 
|  | SM_ab2.insert(0, 0) = 37.0; | 
|  | SM_ab2 = kroneckerProduct(DM_a, SM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab2)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(DM_a, SM_b))); | 
|  |  | 
|  | // test SM = kroneckerProduct(SM,SM) | 
|  | SM_ab.resize(2, 33); | 
|  | SM_ab.insert(0, 0) = 37.0; | 
|  | SM_ab = kroneckerProduct(SM_a, SM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab)); | 
|  | SM_ab2.resize(5, 11); | 
|  | SM_ab2.insert(0, 0) = 37.0; | 
|  | SM_ab2 = kroneckerProduct(SM_a, SM_b); | 
|  | CALL_SUBTEST(check_kronecker_product(SM_ab2)); | 
|  | CALL_SUBTEST(check_kronecker_product(kroneckerProduct(SM_a, SM_b))); | 
|  |  | 
|  | // test SM = kroneckerProduct(SM,SM) with sparse pattern | 
|  | SM_a.resize(4, 5); | 
|  | SM_b.resize(3, 2); | 
|  | SM_a.resizeNonZeros(0); | 
|  | SM_b.resizeNonZeros(0); | 
|  | SM_a.insert(1, 0) = -0.1; | 
|  | SM_a.insert(0, 3) = -0.2; | 
|  | SM_a.insert(2, 4) = 0.3; | 
|  | SM_a.finalize(); | 
|  |  | 
|  | SM_b.insert(0, 0) = 0.4; | 
|  | SM_b.insert(2, 1) = -0.5; | 
|  | SM_b.finalize(); | 
|  | SM_ab.resize(1, 1); | 
|  | SM_ab.insert(0, 0) = 37.0; | 
|  | SM_ab = kroneckerProduct(SM_a, SM_b); | 
|  | CALL_SUBTEST(check_sparse_kronecker_product(SM_ab)); | 
|  |  | 
|  | // test dimension of result of DM = kroneckerProduct(DM,DM) | 
|  | MatrixXd DM_a2 = Eigen::MatrixXd::Random(2, 1); | 
|  | MatrixXd DM_b2 = Eigen::MatrixXd::Random(5, 4); | 
|  | MatrixXd DM_ab2 = kroneckerProduct(DM_a2, DM_b2); | 
|  | CALL_SUBTEST(check_dimension(DM_ab2, 2 * 5, 1 * 4)); | 
|  | DM_a2 = Eigen::MatrixXd::Random(10, 9); | 
|  | DM_b2 = Eigen::MatrixXd::Random(4, 8); | 
|  | DM_ab2 = kroneckerProduct(DM_a2, DM_b2); | 
|  | CALL_SUBTEST(check_dimension(DM_ab2, 10 * 4, 9 * 8)); | 
|  |  | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | double density = Eigen::internal::random<double>(0.01, 0.5); | 
|  | int ra = Eigen::internal::random<int>(1, 50); | 
|  | int ca = Eigen::internal::random<int>(1, 50); | 
|  | int rb = Eigen::internal::random<int>(1, 50); | 
|  | int cb = Eigen::internal::random<int>(1, 50); | 
|  | SparseMatrix<float, ColMajor> sA(ra, ca), sB(rb, cb), sC; | 
|  | SparseMatrix<float, RowMajor> sC2; | 
|  | MatrixXf dA(ra, ca), dB(rb, cb), dC; | 
|  | initSparse(density, dA, sA); | 
|  | initSparse(density, dB, sB); | 
|  |  | 
|  | sC = kroneckerProduct(sA, sB); | 
|  | dC = kroneckerProduct(dA, dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC), dC); | 
|  |  | 
|  | sC = kroneckerProduct(sA.transpose(), sB); | 
|  | dC = kroneckerProduct(dA.transpose(), dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC), dC); | 
|  |  | 
|  | sC = kroneckerProduct(sA.transpose(), sB.transpose()); | 
|  | dC = kroneckerProduct(dA.transpose(), dB.transpose()); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC), dC); | 
|  |  | 
|  | sC = kroneckerProduct(sA, sB.transpose()); | 
|  | dC = kroneckerProduct(dA, dB.transpose()); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC), dC); | 
|  |  | 
|  | sC2 = kroneckerProduct(sA, sB); | 
|  | dC = kroneckerProduct(dA, dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC2), dC); | 
|  |  | 
|  | sC2 = kroneckerProduct(dA, sB); | 
|  | dC = kroneckerProduct(dA, dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC2), dC); | 
|  |  | 
|  | sC2 = kroneckerProduct(sA, dB); | 
|  | dC = kroneckerProduct(dA, dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC2), dC); | 
|  |  | 
|  | sC2 = kroneckerProduct(2 * sA, sB); | 
|  | dC = kroneckerProduct(2 * dA, dB); | 
|  | VERIFY_IS_APPROX(MatrixXf(sC2), dC); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_TEST_PART_2 | 
|  |  | 
|  | // simply check that for a dense kronecker product, sparse module is not needed | 
|  | #include "main.h" | 
|  | #include <Eigen/KroneckerProduct> | 
|  |  | 
|  | EIGEN_DECLARE_TEST(kronecker_product) { | 
|  | MatrixXd a(2, 2), b(3, 3), c; | 
|  | a.setRandom(); | 
|  | b.setRandom(); | 
|  | c = kroneckerProduct(a, b); | 
|  | VERIFY_IS_APPROX(c.block(3, 3, 3, 3), a(1, 1) * b); | 
|  | } | 
|  |  | 
|  | #endif |