|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" | 
|  | // research report written by Ming Gu and Stanley C.Eisenstat | 
|  | // The code variable names correspond to the names they used in their | 
|  | // report | 
|  | // | 
|  | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> | 
|  | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> | 
|  | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> | 
|  | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> | 
|  | // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_BDCSVD_H | 
|  | #define EIGEN_BDCSVD_H | 
|  | // #define EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | // #define EIGEN_BDCSVD_SANITY_CHECKS | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | #undef eigen_internal_assert | 
|  | #define eigen_internal_assert(X) assert(X); | 
|  | #endif | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | #include <iostream> | 
|  | #endif | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | IOFormat bdcsvdfmt(8, 0, ", ", "\n", "  [", "]"); | 
|  | #endif | 
|  |  | 
|  | template <typename MatrixType_, int Options> | 
|  | class BDCSVD; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename MatrixType_, int Options> | 
|  | struct traits<BDCSVD<MatrixType_, Options> > : svd_traits<MatrixType_, Options> { | 
|  | typedef MatrixType_ MatrixType; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType, int Options> | 
|  | struct allocate_small_svd { | 
|  | static void run(JacobiSVD<MatrixType, Options>& smallSvd, Index rows, Index cols, unsigned int) { | 
|  | internal::construct_at(&smallSvd, rows, cols); | 
|  | } | 
|  | }; | 
|  |  | 
|  | EIGEN_DIAGNOSTICS(push) | 
|  | EIGEN_DISABLE_DEPRECATED_WARNING | 
|  |  | 
|  | template <typename MatrixType> | 
|  | struct allocate_small_svd<MatrixType, 0> { | 
|  | static void run(JacobiSVD<MatrixType>& smallSvd, Index rows, Index cols, unsigned int computationOptions) { | 
|  | internal::construct_at(&smallSvd, rows, cols, computationOptions); | 
|  | } | 
|  | }; | 
|  |  | 
|  | EIGEN_DIAGNOSTICS(pop) | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \ingroup SVD_Module | 
|  | * | 
|  | * | 
|  | * \class BDCSVD | 
|  | * | 
|  | * \brief class Bidiagonal Divide and Conquer SVD | 
|  | * | 
|  | * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition | 
|  | * | 
|  | * \tparam Options_ this optional parameter allows one to specify options for computing unitaries \a U and \a V. | 
|  | *                  Possible values are #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV, and | 
|  | *                  #DisableQRDecomposition. It is not possible to request both the thin and full version of \a U or | 
|  | *                  \a V. By default, unitaries are not computed. BDCSVD uses R-Bidiagonalization to improve | 
|  | *                  performance on tall and wide matrices. For backwards compatility, the option | 
|  | *                  #DisableQRDecomposition can be used to disable this optimization. | 
|  | * | 
|  | * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, | 
|  | * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD. | 
|  | * You can control the switching size with the setSwitchSize() method, default is 16. | 
|  | * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly | 
|  | * recommended and can several order of magnitude faster. | 
|  | * | 
|  | * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations. | 
|  | * For instance, this concerns Intel's compiler (ICC), which performs such optimization by default unless | 
|  | * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will | 
|  | * significantly degrade the accuracy. | 
|  | * | 
|  | * \sa class JacobiSVD | 
|  | */ | 
|  | template <typename MatrixType_, int Options_> | 
|  | class BDCSVD : public SVDBase<BDCSVD<MatrixType_, Options_> > { | 
|  | typedef SVDBase<BDCSVD> Base; | 
|  |  | 
|  | public: | 
|  | using Base::cols; | 
|  | using Base::computeU; | 
|  | using Base::computeV; | 
|  | using Base::diagSize; | 
|  | using Base::rows; | 
|  |  | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename Base::Scalar Scalar; | 
|  | typedef typename Base::RealScalar RealScalar; | 
|  | typedef typename NumTraits<RealScalar>::Literal Literal; | 
|  | typedef typename Base::Index Index; | 
|  | enum { | 
|  | Options = Options_, | 
|  | QRDecomposition = Options & internal::QRPreconditionerBits, | 
|  | ComputationOptions = Options & internal::ComputationOptionsBits, | 
|  | RowsAtCompileTime = Base::RowsAtCompileTime, | 
|  | ColsAtCompileTime = Base::ColsAtCompileTime, | 
|  | DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime, | 
|  | MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = Base::MaxColsAtCompileTime, | 
|  | MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime, | 
|  | MatrixOptions = Base::MatrixOptions | 
|  | }; | 
|  |  | 
|  | typedef typename Base::MatrixUType MatrixUType; | 
|  | typedef typename Base::MatrixVType MatrixVType; | 
|  | typedef typename Base::SingularValuesType SingularValuesType; | 
|  |  | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX; | 
|  | typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr; | 
|  | typedef Matrix<RealScalar, Dynamic, 1> VectorType; | 
|  | typedef Array<RealScalar, Dynamic, 1> ArrayXr; | 
|  | typedef Array<Index, 1, Dynamic> ArrayXi; | 
|  | typedef Ref<ArrayXr> ArrayRef; | 
|  | typedef Ref<ArrayXi> IndicesRef; | 
|  |  | 
|  | /** \brief Default Constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via BDCSVD::compute(const MatrixType&). | 
|  | */ | 
|  | BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0) {} | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem size and \a Options template parameter. | 
|  | * \sa BDCSVD() | 
|  | */ | 
|  | BDCSVD(Index rows, Index cols) : m_algoswap(16), m_numIters(0) { | 
|  | allocate(rows, cols, internal::get_computation_options(Options)); | 
|  | } | 
|  |  | 
|  | /** \brief Default Constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem size and the \a computationOptions. | 
|  | * | 
|  | * One \b cannot request unitaries using both the \a Options template parameter | 
|  | * and the constructor. If possible, prefer using the \a Options template parameter. | 
|  | * | 
|  | * \param computationOptions specification for computing Thin/Full unitaries U/V | 
|  | * \sa BDCSVD() | 
|  | * | 
|  | * \deprecated Will be removed in the next major Eigen version. Options should | 
|  | * be specified in the \a Options template parameter. | 
|  | */ | 
|  | EIGEN_DEPRECATED BDCSVD(Index rows, Index cols, unsigned int computationOptions) : m_algoswap(16), m_numIters(0) { | 
|  | internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, rows, cols); | 
|  | allocate(rows, cols, computationOptions); | 
|  | } | 
|  |  | 
|  | /** \brief Constructor performing the decomposition of given matrix, using the custom options specified | 
|  | *         with the \a Options template parameter. | 
|  | * | 
|  | * \param matrix the matrix to decompose | 
|  | */ | 
|  | BDCSVD(const MatrixType& matrix) : m_algoswap(16), m_numIters(0) { | 
|  | compute_impl(matrix, internal::get_computation_options(Options)); | 
|  | } | 
|  |  | 
|  | /** \brief Constructor performing the decomposition of given matrix using specified options | 
|  | *         for computing unitaries. | 
|  | * | 
|  | *  One \b cannot request unitaries using both the \a Options template parameter | 
|  | *  and the constructor. If possible, prefer using the \a Options template parameter. | 
|  | * | 
|  | * \param matrix the matrix to decompose | 
|  | * \param computationOptions specification for computing Thin/Full unitaries U/V | 
|  | * | 
|  | * \deprecated Will be removed in the next major Eigen version. Options should | 
|  | * be specified in the \a Options template parameter. | 
|  | */ | 
|  | EIGEN_DEPRECATED BDCSVD(const MatrixType& matrix, unsigned int computationOptions) : m_algoswap(16), m_numIters(0) { | 
|  | internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, matrix.rows(), matrix.cols()); | 
|  | compute_impl(matrix, computationOptions); | 
|  | } | 
|  |  | 
|  | ~BDCSVD() {} | 
|  |  | 
|  | /** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified | 
|  | *         using the \a Options template parameter or the class constructor. | 
|  | * | 
|  | * \param matrix the matrix to decompose | 
|  | */ | 
|  | BDCSVD& compute(const MatrixType& matrix) { return compute_impl(matrix, m_computationOptions); } | 
|  |  | 
|  | /** \brief Method performing the decomposition of given matrix, as specified by | 
|  | *         the `computationOptions` parameter. | 
|  | * | 
|  | * \param matrix the matrix to decompose | 
|  | * \param computationOptions specify whether to compute Thin/Full unitaries U/V | 
|  | * | 
|  | * \deprecated Will be removed in the next major Eigen version. Options should | 
|  | * be specified in the \a Options template parameter. | 
|  | */ | 
|  | EIGEN_DEPRECATED BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions) { | 
|  | internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, matrix.rows(), matrix.cols()); | 
|  | return compute_impl(matrix, computationOptions); | 
|  | } | 
|  |  | 
|  | void setSwitchSize(int s) { | 
|  | eigen_assert(s >= 3 && "BDCSVD the size of the algo switch has to be at least 3."); | 
|  | m_algoswap = s; | 
|  | } | 
|  |  | 
|  | private: | 
|  | BDCSVD& compute_impl(const MatrixType& matrix, unsigned int computationOptions); | 
|  | void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); | 
|  | void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); | 
|  | void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, | 
|  | ArrayRef shifts, ArrayRef mus); | 
|  | void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, | 
|  | const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat); | 
|  | void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, | 
|  | const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V); | 
|  | void deflation43(Index firstCol, Index shift, Index i, Index size); | 
|  | void deflation44(Index firstColu, Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); | 
|  | void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); | 
|  | template <typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> | 
|  | void copyUV(const HouseholderU& householderU, const HouseholderV& householderV, const NaiveU& naiveU, | 
|  | const NaiveV& naivev); | 
|  | void structured_update(Block<MatrixXr, Dynamic, Dynamic> A, const MatrixXr& B, Index n1); | 
|  | static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, | 
|  | const ArrayRef& diagShifted, RealScalar shift); | 
|  | template <typename SVDType> | 
|  | void computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, Index firstColW, Index shift); | 
|  |  | 
|  | protected: | 
|  | void allocate(Index rows, Index cols, unsigned int computationOptions); | 
|  | MatrixXr m_naiveU, m_naiveV; | 
|  | MatrixXr m_computed; | 
|  | Index m_nRec; | 
|  | ArrayXr m_workspace; | 
|  | ArrayXi m_workspaceI; | 
|  | int m_algoswap; | 
|  | bool m_isTranspose, m_compU, m_compV, m_useQrDecomp; | 
|  | JacobiSVD<MatrixType, ComputationOptions> smallSvd; | 
|  | HouseholderQR<MatrixX> qrDecomp; | 
|  | internal::UpperBidiagonalization<MatrixX> bid; | 
|  | MatrixX copyWorkspace; | 
|  | MatrixX reducedTriangle; | 
|  |  | 
|  | using Base::m_computationOptions; | 
|  | using Base::m_computeThinU; | 
|  | using Base::m_computeThinV; | 
|  | using Base::m_info; | 
|  | using Base::m_isInitialized; | 
|  | using Base::m_matrixU; | 
|  | using Base::m_matrixV; | 
|  | using Base::m_nonzeroSingularValues; | 
|  | using Base::m_singularValues; | 
|  |  | 
|  | public: | 
|  | int m_numIters; | 
|  | };  // end class BDCSVD | 
|  |  | 
|  | // Method to allocate and initialize matrix and attributes | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::allocate(Index rows, Index cols, unsigned int computationOptions) { | 
|  | if (Base::allocate(rows, cols, computationOptions)) return; | 
|  |  | 
|  | if (cols < m_algoswap) | 
|  | internal::allocate_small_svd<MatrixType, ComputationOptions>::run(smallSvd, rows, cols, computationOptions); | 
|  |  | 
|  | m_computed = MatrixXr::Zero(diagSize() + 1, diagSize()); | 
|  | m_compU = computeV(); | 
|  | m_compV = computeU(); | 
|  | m_isTranspose = (cols > rows); | 
|  | if (m_isTranspose) std::swap(m_compU, m_compV); | 
|  |  | 
|  | // kMinAspectRatio is the crossover point that determines if we perform R-Bidiagonalization | 
|  | // or bidiagonalize the input matrix directly. | 
|  | // It is based off of LAPACK's dgesdd routine, which uses 11.0/6.0 | 
|  | // we use a larger scalar to prevent a regression for relatively square matrices. | 
|  | constexpr Index kMinAspectRatio = 4; | 
|  | constexpr bool disableQrDecomp = static_cast<int>(QRDecomposition) == static_cast<int>(DisableQRDecomposition); | 
|  | m_useQrDecomp = !disableQrDecomp && ((rows / kMinAspectRatio > cols) || (cols / kMinAspectRatio > rows)); | 
|  | if (m_useQrDecomp) { | 
|  | qrDecomp = HouseholderQR<MatrixX>((std::max)(rows, cols), (std::min)(rows, cols)); | 
|  | reducedTriangle = MatrixX(diagSize(), diagSize()); | 
|  | } | 
|  |  | 
|  | copyWorkspace = MatrixX(m_isTranspose ? cols : rows, m_isTranspose ? rows : cols); | 
|  | bid = internal::UpperBidiagonalization<MatrixX>(m_useQrDecomp ? diagSize() : copyWorkspace.rows(), | 
|  | m_useQrDecomp ? diagSize() : copyWorkspace.cols()); | 
|  |  | 
|  | if (m_compU) | 
|  | m_naiveU = MatrixXr::Zero(diagSize() + 1, diagSize() + 1); | 
|  | else | 
|  | m_naiveU = MatrixXr::Zero(2, diagSize() + 1); | 
|  |  | 
|  | if (m_compV) m_naiveV = MatrixXr::Zero(diagSize(), diagSize()); | 
|  |  | 
|  | m_workspace.resize((diagSize() + 1) * (diagSize() + 1) * 3); | 
|  | m_workspaceI.resize(3 * diagSize()); | 
|  | }  // end allocate | 
|  |  | 
|  | template <typename MatrixType, int Options> | 
|  | BDCSVD<MatrixType, Options>& BDCSVD<MatrixType, Options>::compute_impl(const MatrixType& matrix, | 
|  | unsigned int computationOptions) { | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "\n\n\n=================================================================================================" | 
|  | "=====================\n\n\n"; | 
|  | #endif | 
|  | using std::abs; | 
|  |  | 
|  | allocate(matrix.rows(), matrix.cols(), computationOptions); | 
|  |  | 
|  | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); | 
|  |  | 
|  | //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return | 
|  | if (matrix.cols() < m_algoswap) { | 
|  | smallSvd.compute(matrix); | 
|  | m_isInitialized = true; | 
|  | m_info = smallSvd.info(); | 
|  | if (m_info == Success || m_info == NoConvergence) { | 
|  | if (computeU()) m_matrixU = smallSvd.matrixU(); | 
|  | if (computeV()) m_matrixV = smallSvd.matrixV(); | 
|  | m_singularValues = smallSvd.singularValues(); | 
|  | m_nonzeroSingularValues = smallSvd.nonzeroSingularValues(); | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows | 
|  | RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>(); | 
|  | if (!(numext::isfinite)(scale)) { | 
|  | m_isInitialized = true; | 
|  | m_info = InvalidInput; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | if (numext::is_exactly_zero(scale)) scale = Literal(1); | 
|  |  | 
|  | if (m_isTranspose) | 
|  | copyWorkspace = matrix.adjoint() / scale; | 
|  | else | 
|  | copyWorkspace = matrix / scale; | 
|  |  | 
|  | //**** step 1 - Bidiagonalization. | 
|  | // If the problem is sufficiently rectangular, we perform R-Bidiagonalization: compute A = Q(R/0) | 
|  | // and then bidiagonalize R. Otherwise, if the problem is relatively square, we | 
|  | // bidiagonalize the input matrix directly. | 
|  | if (m_useQrDecomp) { | 
|  | qrDecomp.compute(copyWorkspace); | 
|  | reducedTriangle = qrDecomp.matrixQR().topRows(diagSize()); | 
|  | reducedTriangle.template triangularView<StrictlyLower>().setZero(); | 
|  | bid.compute(reducedTriangle); | 
|  | } else { | 
|  | bid.compute(copyWorkspace); | 
|  | } | 
|  |  | 
|  | //**** step 2 - Divide & Conquer | 
|  | m_naiveU.setZero(); | 
|  | m_naiveV.setZero(); | 
|  | // FIXME this line involves a temporary matrix | 
|  | m_computed.topRows(diagSize()) = bid.bidiagonal().toDenseMatrix().transpose(); | 
|  | m_computed.template bottomRows<1>().setZero(); | 
|  | divide(0, diagSize() - 1, 0, 0, 0); | 
|  | if (m_info != Success && m_info != NoConvergence) { | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | //**** step 3 - Copy singular values and vectors | 
|  | for (int i = 0; i < diagSize(); i++) { | 
|  | RealScalar a = abs(m_computed.coeff(i, i)); | 
|  | m_singularValues.coeffRef(i) = a * scale; | 
|  | if (a < considerZero) { | 
|  | m_nonzeroSingularValues = i; | 
|  | m_singularValues.tail(diagSize() - i - 1).setZero(); | 
|  | break; | 
|  | } else if (i == diagSize() - 1) { | 
|  | m_nonzeroSingularValues = i + 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | //**** step 4 - Finalize unitaries U and V | 
|  | if (m_isTranspose) | 
|  | copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU); | 
|  | else | 
|  | copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV); | 
|  |  | 
|  | if (m_useQrDecomp) { | 
|  | if (m_isTranspose && computeV()) | 
|  | m_matrixV.applyOnTheLeft(qrDecomp.householderQ()); | 
|  | else if (!m_isTranspose && computeU()) | 
|  | m_matrixU.applyOnTheLeft(qrDecomp.householderQ()); | 
|  | } | 
|  |  | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | }  // end compute | 
|  |  | 
|  | template <typename MatrixType, int Options> | 
|  | template <typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> | 
|  | void BDCSVD<MatrixType, Options>::copyUV(const HouseholderU& householderU, const HouseholderV& householderV, | 
|  | const NaiveU& naiveU, const NaiveV& naiveV) { | 
|  | // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa | 
|  | if (computeU()) { | 
|  | Index Ucols = m_computeThinU ? diagSize() : rows(); | 
|  | m_matrixU = MatrixX::Identity(rows(), Ucols); | 
|  | m_matrixU.topLeftCorner(diagSize(), diagSize()) = | 
|  | naiveV.template cast<Scalar>().topLeftCorner(diagSize(), diagSize()); | 
|  | // FIXME the following conditionals involve temporary buffers | 
|  | if (m_useQrDecomp) | 
|  | m_matrixU.topLeftCorner(householderU.cols(), diagSize()).applyOnTheLeft(householderU); | 
|  | else | 
|  | m_matrixU.applyOnTheLeft(householderU); | 
|  | } | 
|  | if (computeV()) { | 
|  | Index Vcols = m_computeThinV ? diagSize() : cols(); | 
|  | m_matrixV = MatrixX::Identity(cols(), Vcols); | 
|  | m_matrixV.topLeftCorner(diagSize(), diagSize()) = | 
|  | naiveU.template cast<Scalar>().topLeftCorner(diagSize(), diagSize()); | 
|  | // FIXME the following conditionals involve temporary buffers | 
|  | if (m_useQrDecomp) | 
|  | m_matrixV.topLeftCorner(householderV.cols(), diagSize()).applyOnTheLeft(householderV); | 
|  | else | 
|  | m_matrixV.applyOnTheLeft(householderV); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as: | 
|  | *  A = [A1] | 
|  | *      [A2] | 
|  | * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros. | 
|  | * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large | 
|  | * enough. | 
|  | */ | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::structured_update(Block<MatrixXr, Dynamic, Dynamic> A, const MatrixXr& B, Index n1) { | 
|  | Index n = A.rows(); | 
|  | if (n > 100) { | 
|  | // If the matrices are large enough, let's exploit the sparse structure of A by | 
|  | // splitting it in half (wrt n1), and packing the non-zero columns. | 
|  | Index n2 = n - n1; | 
|  | Map<MatrixXr> A1(m_workspace.data(), n1, n); | 
|  | Map<MatrixXr> A2(m_workspace.data() + n1 * n, n2, n); | 
|  | Map<MatrixXr> B1(m_workspace.data() + n * n, n, n); | 
|  | Map<MatrixXr> B2(m_workspace.data() + 2 * n * n, n, n); | 
|  | Index k1 = 0, k2 = 0; | 
|  | for (Index j = 0; j < n; ++j) { | 
|  | if ((A.col(j).head(n1).array() != Literal(0)).any()) { | 
|  | A1.col(k1) = A.col(j).head(n1); | 
|  | B1.row(k1) = B.row(j); | 
|  | ++k1; | 
|  | } | 
|  | if ((A.col(j).tail(n2).array() != Literal(0)).any()) { | 
|  | A2.col(k2) = A.col(j).tail(n2); | 
|  | B2.row(k2) = B.row(j); | 
|  | ++k2; | 
|  | } | 
|  | } | 
|  |  | 
|  | A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1); | 
|  | A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2); | 
|  | } else { | 
|  | Map<MatrixXr, Aligned> tmp(m_workspace.data(), n, n); | 
|  | tmp.noalias() = A * B; | 
|  | A = tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int Options> | 
|  | template <typename SVDType> | 
|  | void BDCSVD<MatrixType, Options>::computeBaseCase(SVDType& svd, Index n, Index firstCol, Index firstRowW, | 
|  | Index firstColW, Index shift) { | 
|  | svd.compute(m_computed.block(firstCol, firstCol, n + 1, n)); | 
|  | m_info = svd.info(); | 
|  | if (m_info != Success && m_info != NoConvergence) return; | 
|  | if (m_compU) | 
|  | m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = svd.matrixU(); | 
|  | else { | 
|  | m_naiveU.row(0).segment(firstCol, n + 1).real() = svd.matrixU().row(0); | 
|  | m_naiveU.row(1).segment(firstCol, n + 1).real() = svd.matrixU().row(n); | 
|  | } | 
|  | if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = svd.matrixV(); | 
|  | m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); | 
|  | m_computed.diagonal().segment(firstCol + shift, n) = svd.singularValues().head(n); | 
|  | } | 
|  |  | 
|  | // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods | 
|  | // takes as argument the place of the submatrix we are currently working on. | 
|  |  | 
|  | //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; | 
|  | //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; | 
|  | // lastCol + 1 - firstCol is the size of the submatrix. | 
|  | //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section | 
|  | // 1 for more information on W) | 
|  | //@param firstColW : Same as firstRowW with the column. | 
|  | //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the | 
|  | // last column of the U submatrix | 
|  | // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the | 
|  | // reference paper. | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift) { | 
|  | // requires rows = cols + 1; | 
|  | using std::abs; | 
|  | using std::pow; | 
|  | using std::sqrt; | 
|  | const Index n = lastCol - firstCol + 1; | 
|  | const Index k = n / 2; | 
|  | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); | 
|  | RealScalar alphaK; | 
|  | RealScalar betaK; | 
|  | RealScalar r0; | 
|  | RealScalar lambda, phi, c0, s0; | 
|  | VectorType l, f; | 
|  | // We use the other algorithm which is more efficient for small | 
|  | // matrices. | 
|  | if (n < m_algoswap) { | 
|  | // FIXME this block involves temporaries | 
|  | if (m_compV) { | 
|  | JacobiSVD<MatrixXr, ComputeFullU | ComputeFullV> baseSvd; | 
|  | computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift); | 
|  | } else { | 
|  | JacobiSVD<MatrixXr, ComputeFullU> baseSvd; | 
|  | computeBaseCase(baseSvd, n, firstCol, firstRowW, firstColW, shift); | 
|  | } | 
|  | return; | 
|  | } | 
|  | // We use the divide and conquer algorithm | 
|  | alphaK = m_computed(firstCol + k, firstCol + k); | 
|  | betaK = m_computed(firstCol + k + 1, firstCol + k); | 
|  | // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices | 
|  | // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the | 
|  | // right submatrix before the left one. | 
|  | divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); | 
|  | if (m_info != Success && m_info != NoConvergence) return; | 
|  | divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); | 
|  | if (m_info != Success && m_info != NoConvergence) return; | 
|  |  | 
|  | if (m_compU) { | 
|  | lambda = m_naiveU(firstCol + k, firstCol + k); | 
|  | phi = m_naiveU(firstCol + k + 1, lastCol + 1); | 
|  | } else { | 
|  | lambda = m_naiveU(1, firstCol + k); | 
|  | phi = m_naiveU(0, lastCol + 1); | 
|  | } | 
|  | r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi)); | 
|  | if (m_compU) { | 
|  | l = m_naiveU.row(firstCol + k).segment(firstCol, k); | 
|  | f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); | 
|  | } else { | 
|  | l = m_naiveU.row(1).segment(firstCol, k); | 
|  | f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); | 
|  | } | 
|  | if (m_compV) m_naiveV(firstRowW + k, firstColW) = Literal(1); | 
|  | if (r0 < considerZero) { | 
|  | c0 = Literal(1); | 
|  | s0 = Literal(0); | 
|  | } else { | 
|  | c0 = alphaK * lambda / r0; | 
|  | s0 = betaK * phi / r0; | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(m_naiveU.allFinite()); | 
|  | eigen_internal_assert(m_naiveV.allFinite()); | 
|  | eigen_internal_assert(m_computed.allFinite()); | 
|  | #endif | 
|  |  | 
|  | if (m_compU) { | 
|  | MatrixXr q1(m_naiveU.col(firstCol + k).segment(firstCol, k + 1)); | 
|  | // we shiftW Q1 to the right | 
|  | for (Index i = firstCol + k - 1; i >= firstCol; i--) | 
|  | m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1); | 
|  | // we shift q1 at the left with a factor c0 | 
|  | m_naiveU.col(firstCol).segment(firstCol, k + 1) = (q1 * c0); | 
|  | // last column = q1 * - s0 | 
|  | m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * (-s0)); | 
|  | // first column = q2 * s0 | 
|  | m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = | 
|  | m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; | 
|  | // q2 *= c0 | 
|  | m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; | 
|  | } else { | 
|  | RealScalar q1 = m_naiveU(0, firstCol + k); | 
|  | // we shift Q1 to the right | 
|  | for (Index i = firstCol + k - 1; i >= firstCol; i--) m_naiveU(0, i + 1) = m_naiveU(0, i); | 
|  | // we shift q1 at the left with a factor c0 | 
|  | m_naiveU(0, firstCol) = (q1 * c0); | 
|  | // last column = q1 * - s0 | 
|  | m_naiveU(0, lastCol + 1) = (q1 * (-s0)); | 
|  | // first column = q2 * s0 | 
|  | m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) * s0; | 
|  | // q2 *= c0 | 
|  | m_naiveU(1, lastCol + 1) *= c0; | 
|  | m_naiveU.row(1).segment(firstCol + 1, k).setZero(); | 
|  | m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(m_naiveU.allFinite()); | 
|  | eigen_internal_assert(m_naiveV.allFinite()); | 
|  | eigen_internal_assert(m_computed.allFinite()); | 
|  | #endif | 
|  |  | 
|  | m_computed(firstCol + shift, firstCol + shift) = r0; | 
|  | m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real(); | 
|  | m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real(); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | ArrayXr tmp1 = (m_computed.block(firstCol + shift, firstCol + shift, n, n)).jacobiSvd().singularValues(); | 
|  | #endif | 
|  | // Second part: try to deflate singular values in combined matrix | 
|  | deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | ArrayXr tmp2 = (m_computed.block(firstCol + shift, firstCol + shift, n, n)).jacobiSvd().singularValues(); | 
|  | std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n"; | 
|  | std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n"; | 
|  | std::cout << "err:      " << ((tmp1 - tmp2).abs() > 1e-12 * tmp2.abs()).transpose() << "\n"; | 
|  | static int count = 0; | 
|  | std::cout << "# " << ++count << "\n\n"; | 
|  | eigen_internal_assert((tmp1 - tmp2).matrix().norm() < 1e-14 * tmp2.matrix().norm()); | 
|  | //   eigen_internal_assert(count<681); | 
|  | //   eigen_internal_assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all()); | 
|  | #endif | 
|  |  | 
|  | // Third part: compute SVD of combined matrix | 
|  | MatrixXr UofSVD, VofSVD; | 
|  | VectorType singVals; | 
|  | computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(UofSVD.allFinite()); | 
|  | eigen_internal_assert(VofSVD.allFinite()); | 
|  | #endif | 
|  |  | 
|  | if (m_compU) | 
|  | structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n + 2) / 2); | 
|  | else { | 
|  | Map<Matrix<RealScalar, 2, Dynamic>, Aligned> tmp(m_workspace.data(), 2, n + 1); | 
|  | tmp.noalias() = m_naiveU.middleCols(firstCol, n + 1) * UofSVD; | 
|  | m_naiveU.middleCols(firstCol, n + 1) = tmp; | 
|  | } | 
|  |  | 
|  | if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n + 1) / 2); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(m_naiveU.allFinite()); | 
|  | eigen_internal_assert(m_naiveV.allFinite()); | 
|  | eigen_internal_assert(m_computed.allFinite()); | 
|  | #endif | 
|  |  | 
|  | m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); | 
|  | m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; | 
|  | }  // end divide | 
|  |  | 
|  | // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in | 
|  | // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing | 
|  | // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except | 
|  | // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order. | 
|  | // | 
|  | // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better | 
|  | // handling of round-off errors, be consistent in ordering | 
|  | // For instance, to solve the secular equation using FMM, see | 
|  | // http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, | 
|  | MatrixXr& V) { | 
|  | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); | 
|  | using std::abs; | 
|  | ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n); | 
|  | m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal(); | 
|  | ArrayRef diag = m_workspace.head(n); | 
|  | diag(0) = Literal(0); | 
|  |  | 
|  | // Allocate space for singular values and vectors | 
|  | singVals.resize(n); | 
|  | U.resize(n + 1, n + 1); | 
|  | if (m_compV) V.resize(n, n); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | if (col0.hasNaN() || diag.hasNaN()) std::cout << "\n\nHAS NAN\n\n"; | 
|  | #endif | 
|  |  | 
|  | // Many singular values might have been deflated, the zero ones have been moved to the end, | 
|  | // but others are interleaved and we must ignore them at this stage. | 
|  | // To this end, let's compute a permutation skipping them: | 
|  | Index actual_n = n; | 
|  | while (actual_n > 1 && numext::is_exactly_zero(diag(actual_n - 1))) { | 
|  | --actual_n; | 
|  | eigen_internal_assert(numext::is_exactly_zero(col0(actual_n))); | 
|  | } | 
|  | Index m = 0;  // size of the deflated problem | 
|  | for (Index k = 0; k < actual_n; ++k) | 
|  | if (abs(col0(k)) > considerZero) m_workspaceI(m++) = k; | 
|  | Map<ArrayXi> perm(m_workspaceI.data(), m); | 
|  |  | 
|  | Map<ArrayXr> shifts(m_workspace.data() + 1 * n, n); | 
|  | Map<ArrayXr> mus(m_workspace.data() + 2 * n, n); | 
|  | Map<ArrayXr> zhat(m_workspace.data() + 3 * n, n); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "computeSVDofM using:\n"; | 
|  | std::cout << "  z: " << col0.transpose() << "\n"; | 
|  | std::cout << "  d: " << diag.transpose() << "\n"; | 
|  | #endif | 
|  |  | 
|  | // Compute singVals, shifts, and mus | 
|  | computeSingVals(col0, diag, perm, singVals, shifts, mus); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "  j:        " | 
|  | << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() | 
|  | << "\n\n"; | 
|  | std::cout << "  sing-val: " << singVals.transpose() << "\n"; | 
|  | std::cout << "  mu:       " << mus.transpose() << "\n"; | 
|  | std::cout << "  shift:    " << shifts.transpose() << "\n"; | 
|  |  | 
|  | { | 
|  | std::cout << "\n\n    mus:    " << mus.head(actual_n).transpose() << "\n\n"; | 
|  | std::cout << "    check1 (expect0) : " | 
|  | << ((singVals.array() - (shifts + mus)) / singVals.array()).head(actual_n).transpose() << "\n\n"; | 
|  | eigen_internal_assert((((singVals.array() - (shifts + mus)) / singVals.array()).head(actual_n) >= 0).all()); | 
|  | std::cout << "    check2 (>0)      : " << ((singVals.array() - diag) / singVals.array()).head(actual_n).transpose() | 
|  | << "\n\n"; | 
|  | eigen_internal_assert((((singVals.array() - diag) / singVals.array()).head(actual_n) >= 0).all()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(singVals.allFinite()); | 
|  | eigen_internal_assert(mus.allFinite()); | 
|  | eigen_internal_assert(shifts.allFinite()); | 
|  | #endif | 
|  |  | 
|  | // Compute zhat | 
|  | perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat); | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "  zhat: " << zhat.transpose() << "\n"; | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(zhat.allFinite()); | 
|  | #endif | 
|  |  | 
|  | computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(), U.cols()))).norm() << "\n"; | 
|  | std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(), V.cols()))).norm() << "\n"; | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(m_naiveU.allFinite()); | 
|  | eigen_internal_assert(m_naiveV.allFinite()); | 
|  | eigen_internal_assert(m_computed.allFinite()); | 
|  | eigen_internal_assert(U.allFinite()); | 
|  | eigen_internal_assert(V.allFinite()); | 
|  | //   eigen_internal_assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < | 
|  | //   100*NumTraits<RealScalar>::epsilon() * n); eigen_internal_assert((V.transpose() * V - | 
|  | //   MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n); | 
|  | #endif | 
|  |  | 
|  | // Because of deflation, the singular values might not be completely sorted. | 
|  | // Fortunately, reordering them is a O(n) problem | 
|  | for (Index i = 0; i < actual_n - 1; ++i) { | 
|  | if (singVals(i) > singVals(i + 1)) { | 
|  | using std::swap; | 
|  | swap(singVals(i), singVals(i + 1)); | 
|  | U.col(i).swap(U.col(i + 1)); | 
|  | if (m_compV) V.col(i).swap(V.col(i + 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | { | 
|  | bool singular_values_sorted = | 
|  | (((singVals.segment(1, actual_n - 1) - singVals.head(actual_n - 1))).array() >= 0).all(); | 
|  | if (!singular_values_sorted) | 
|  | std::cout << "Singular values are not sorted: " << singVals.segment(1, actual_n).transpose() << "\n"; | 
|  | eigen_internal_assert(singular_values_sorted); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Reverse order so that singular values in increased order | 
|  | // Because of deflation, the zeros singular-values are already at the end | 
|  | singVals.head(actual_n).reverseInPlace(); | 
|  | U.leftCols(actual_n).rowwise().reverseInPlace(); | 
|  | if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace(); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n)); | 
|  | std::cout << "  * j:        " << jsvd.singularValues().transpose() << "\n\n"; | 
|  | std::cout << "  * sing-val: " << singVals.transpose() << "\n"; | 
|  | //   std::cout << "  * err:      " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n"; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int Options> | 
|  | typename BDCSVD<MatrixType, Options>::RealScalar BDCSVD<MatrixType, Options>::secularEq( | 
|  | RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const ArrayRef& diagShifted, | 
|  | RealScalar shift) { | 
|  | Index m = perm.size(); | 
|  | RealScalar res = Literal(1); | 
|  | for (Index i = 0; i < m; ++i) { | 
|  | Index j = perm(i); | 
|  | // The following expression could be rewritten to involve only a single division, | 
|  | // but this would make the expression more sensitive to overflow. | 
|  | res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu)); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, | 
|  | VectorType& singVals, ArrayRef shifts, ArrayRef mus) { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | using std::swap; | 
|  |  | 
|  | Index n = col0.size(); | 
|  | Index actual_n = n; | 
|  | // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above | 
|  | // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value. | 
|  | while (actual_n > 1 && numext::is_exactly_zero(col0(actual_n - 1))) --actual_n; | 
|  |  | 
|  | for (Index k = 0; k < n; ++k) { | 
|  | if (numext::is_exactly_zero(col0(k)) || actual_n == 1) { | 
|  | // if col0(k) == 0, then entry is deflated, so singular value is on diagonal | 
|  | // if actual_n==1, then the deflated problem is already diagonalized | 
|  | singVals(k) = k == 0 ? col0(0) : diag(k); | 
|  | mus(k) = Literal(0); | 
|  | shifts(k) = k == 0 ? col0(0) : diag(k); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // otherwise, use secular equation to find singular value | 
|  | RealScalar left = diag(k); | 
|  | RealScalar right;  // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm()); | 
|  | if (k == actual_n - 1) | 
|  | right = (diag(actual_n - 1) + col0.matrix().norm()); | 
|  | else { | 
|  | // Skip deflated singular values, | 
|  | // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside. | 
|  | // This should be equivalent to using perm[] | 
|  | Index l = k + 1; | 
|  | while (numext::is_exactly_zero(col0(l))) { | 
|  | ++l; | 
|  | eigen_internal_assert(l < actual_n); | 
|  | } | 
|  | right = diag(l); | 
|  | } | 
|  |  | 
|  | // first decide whether it's closer to the left end or the right end | 
|  | RealScalar mid = left + (right - left) / Literal(2); | 
|  | RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0)); | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "right-left = " << right - left << "\n"; | 
|  | //     std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left) | 
|  | //                            << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right)   << | 
|  | //                            "\n"; | 
|  | std::cout << "     = " << secularEq(left + RealScalar(0.000001) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.1) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.2) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.3) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.4) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.49) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.5) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.51) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.6) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.7) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.8) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.9) * (right - left), col0, diag, perm, diag, 0) << " " | 
|  | << secularEq(left + RealScalar(0.999999) * (right - left), col0, diag, perm, diag, 0) << "\n"; | 
|  | #endif | 
|  | RealScalar shift = (k == actual_n - 1 || fMid > Literal(0)) ? left : right; | 
|  |  | 
|  | // measure everything relative to shift | 
|  | Map<ArrayXr> diagShifted(m_workspace.data() + 4 * n, n); | 
|  | diagShifted = diag - shift; | 
|  |  | 
|  | if (k != actual_n - 1) { | 
|  | // check that after the shift, f(mid) is still negative: | 
|  | RealScalar midShifted = (right - left) / RealScalar(2); | 
|  | // we can test exact equality here, because shift comes from `... ? left : right` | 
|  | if (numext::equal_strict(shift, right)) midShifted = -midShifted; | 
|  | RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift); | 
|  | if (fMidShifted > 0) { | 
|  | // fMid was erroneous, fix it: | 
|  | shift = fMidShifted > Literal(0) ? left : right; | 
|  | diagShifted = diag - shift; | 
|  | } | 
|  | } | 
|  |  | 
|  | // initial guess | 
|  | RealScalar muPrev, muCur; | 
|  | // we can test exact equality here, because shift comes from `... ? left : right` | 
|  | if (numext::equal_strict(shift, left)) { | 
|  | muPrev = (right - left) * RealScalar(0.1); | 
|  | if (k == actual_n - 1) | 
|  | muCur = right - left; | 
|  | else | 
|  | muCur = (right - left) * RealScalar(0.5); | 
|  | } else { | 
|  | muPrev = -(right - left) * RealScalar(0.1); | 
|  | muCur = -(right - left) * RealScalar(0.5); | 
|  | } | 
|  |  | 
|  | RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift); | 
|  | RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift); | 
|  | if (abs(fPrev) < abs(fCur)) { | 
|  | swap(fPrev, fCur); | 
|  | swap(muPrev, muCur); | 
|  | } | 
|  |  | 
|  | // rational interpolation: fit a function of the form a / mu + b through the two previous | 
|  | // iterates and use its zero to compute the next iterate | 
|  | bool useBisection = fPrev * fCur > Literal(0); | 
|  | while (!numext::is_exactly_zero(fCur) && | 
|  | abs(muCur - muPrev) > | 
|  | Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && | 
|  | abs(fCur - fPrev) > NumTraits<RealScalar>::epsilon() && !useBisection) { | 
|  | ++m_numIters; | 
|  |  | 
|  | // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples. | 
|  | RealScalar a = (fCur - fPrev) / (Literal(1) / muCur - Literal(1) / muPrev); | 
|  | RealScalar b = fCur - a / muCur; | 
|  | // And find mu such that f(mu)==0: | 
|  | RealScalar muZero = -a / b; | 
|  | RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert((numext::isfinite)(fZero)); | 
|  | #endif | 
|  |  | 
|  | muPrev = muCur; | 
|  | fPrev = fCur; | 
|  | muCur = muZero; | 
|  | fCur = fZero; | 
|  |  | 
|  | // we can test exact equality here, because shift comes from `... ? left : right` | 
|  | if (numext::equal_strict(shift, left) && (muCur < Literal(0) || muCur > right - left)) useBisection = true; | 
|  | if (numext::equal_strict(shift, right) && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true; | 
|  | if (abs(fCur) > abs(fPrev)) useBisection = true; | 
|  | } | 
|  |  | 
|  | // fall back on bisection method if rational interpolation did not work | 
|  | if (useBisection) { | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n"; | 
|  | #endif | 
|  | RealScalar leftShifted, rightShifted; | 
|  | // we can test exact equality here, because shift comes from `... ? left : right` | 
|  | if (numext::equal_strict(shift, left)) { | 
|  | // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)), | 
|  | // the factor 2 is to be more conservative | 
|  | leftShifted = | 
|  | numext::maxi<RealScalar>((std::numeric_limits<RealScalar>::min)(), | 
|  | Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)())); | 
|  |  | 
|  | // check that we did it right: | 
|  | eigen_internal_assert( | 
|  | (numext::isfinite)((col0(k) / leftShifted) * (col0(k) / (diag(k) + shift + leftShifted)))); | 
|  | // I don't understand why the case k==0 would be special there: | 
|  | // if (k == 0) rightShifted = right - left; else | 
|  | rightShifted = (k == actual_n - 1) | 
|  | ? right | 
|  | : ((right - left) * RealScalar(0.51));  // theoretically we can take 0.5, but let's be safe | 
|  | } else { | 
|  | leftShifted = -(right - left) * RealScalar(0.51); | 
|  | if (k + 1 < n) | 
|  | rightShifted = -numext::maxi<RealScalar>((std::numeric_limits<RealScalar>::min)(), | 
|  | abs(col0(k + 1)) / sqrt((std::numeric_limits<RealScalar>::max)())); | 
|  | else | 
|  | rightShifted = -(std::numeric_limits<RealScalar>::min)(); | 
|  | } | 
|  |  | 
|  | RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift); | 
|  | eigen_internal_assert(fLeft < Literal(0)); | 
|  |  | 
|  | #if defined EIGEN_BDCSVD_DEBUG_VERBOSE || defined EIGEN_BDCSVD_SANITY_CHECKS || defined EIGEN_INTERNAL_DEBUGGING | 
|  | RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift); | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | if (!(numext::isfinite)(fLeft)) | 
|  | std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n"; | 
|  | eigen_internal_assert((numext::isfinite)(fLeft)); | 
|  |  | 
|  | if (!(numext::isfinite)(fRight)) | 
|  | std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n"; | 
|  | // eigen_internal_assert((numext::isfinite)(fRight)); | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | if (!(fLeft * fRight < 0)) { | 
|  | std::cout << "f(leftShifted) using  leftShifted=" << leftShifted | 
|  | << " ;  diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; " | 
|  | << "left==shift=" << bool(left == shift) << " ; left-shift = " << (left - shift) << "\n"; | 
|  | std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << "  ;  " | 
|  | << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted | 
|  | << "], shift=" << shift << " ,  f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift) | 
|  | << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n"; | 
|  | } | 
|  | #endif | 
|  | eigen_internal_assert(fLeft * fRight < Literal(0)); | 
|  |  | 
|  | if (fLeft < Literal(0)) { | 
|  | while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * | 
|  | numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted))) { | 
|  | RealScalar midShifted = (leftShifted + rightShifted) / Literal(2); | 
|  | fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift); | 
|  | eigen_internal_assert((numext::isfinite)(fMid)); | 
|  |  | 
|  | if (fLeft * fMid < Literal(0)) { | 
|  | rightShifted = midShifted; | 
|  | } else { | 
|  | leftShifted = midShifted; | 
|  | fLeft = fMid; | 
|  | } | 
|  | } | 
|  | muCur = (leftShifted + rightShifted) / Literal(2); | 
|  | } else { | 
|  | // We have a problem as shifting on the left or right give either a positive or negative value | 
|  | // at the middle of [left,right]... | 
|  | // Instead of abbording or entering an infinite loop, | 
|  | // let's just use the middle as the estimated zero-crossing: | 
|  | muCur = (right - left) * RealScalar(0.5); | 
|  | // we can test exact equality here, because shift comes from `... ? left : right` | 
|  | if (numext::equal_strict(shift, right)) muCur = -muCur; | 
|  | } | 
|  | } | 
|  |  | 
|  | singVals[k] = shift + muCur; | 
|  | shifts[k] = shift; | 
|  | mus[k] = muCur; | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | if (k + 1 < n) | 
|  | std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " | 
|  | << diag(k + 1) << "\n"; | 
|  | #endif | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(k == 0 || singVals[k] >= singVals[k - 1]); | 
|  | eigen_internal_assert(singVals[k] >= diag(k)); | 
|  | #endif | 
|  |  | 
|  | // perturb singular value slightly if it equals diagonal entry to avoid division by zero later | 
|  | // (deflation is supposed to avoid this from happening) | 
|  | // - this does no seem to be necessary anymore - | 
|  | // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon(); | 
|  | // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, | 
|  | const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, | 
|  | ArrayRef zhat) { | 
|  | using std::sqrt; | 
|  | Index n = col0.size(); | 
|  | Index m = perm.size(); | 
|  | if (m == 0) { | 
|  | zhat.setZero(); | 
|  | return; | 
|  | } | 
|  | Index lastIdx = perm(m - 1); | 
|  | // The offset permits to skip deflated entries while computing zhat | 
|  | for (Index k = 0; k < n; ++k) { | 
|  | if (numext::is_exactly_zero(col0(k)))  // deflated | 
|  | zhat(k) = Literal(0); | 
|  | else { | 
|  | // see equation (3.6) | 
|  | RealScalar dk = diag(k); | 
|  | RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk)); | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | if (prod < 0) { | 
|  | std::cout << "k = " << k << " ;  z(k)=" << col0(k) << ", diag(k)=" << dk << "\n"; | 
|  | std::cout << "prod = " | 
|  | << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) | 
|  | << " - " << dk << "))" | 
|  | << "\n"; | 
|  | std::cout << "     = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n"; | 
|  | } | 
|  | eigen_internal_assert(prod >= 0); | 
|  | #endif | 
|  |  | 
|  | for (Index l = 0; l < m; ++l) { | 
|  | Index i = perm(l); | 
|  | if (i != k) { | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | if (i >= k && (l == 0 || l - 1 >= m)) { | 
|  | std::cout << "Error in perturbCol0\n"; | 
|  | std::cout << "  " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) | 
|  | << " " << diag(k) << " " | 
|  | << "\n"; | 
|  | std::cout << "  " << diag(i) << "\n"; | 
|  | Index j = (i < k /*|| l==0*/) ? i : perm(l - 1); | 
|  | std::cout << "  " | 
|  | << "j=" << j << "\n"; | 
|  | } | 
|  | #endif | 
|  | Index j = i < k ? i : l > 0 ? perm(l - 1) : i; | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | if (!(dk != Literal(0) || diag(i) != Literal(0))) { | 
|  | std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n"; | 
|  | } | 
|  | eigen_internal_assert(dk != Literal(0) || diag(i) != Literal(0)); | 
|  | #endif | 
|  | prod *= ((singVals(j) + dk) / ((diag(i) + dk))) * ((mus(j) + (shifts(j) - dk)) / ((diag(i) - dk))); | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(prod >= 0); | 
|  | #endif | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | if (i != k && | 
|  | numext::abs(((singVals(j) + dk) * (mus(j) + (shifts(j) - dk))) / ((diag(i) + dk) * (diag(i) - dk)) - 1) > | 
|  | 0.9) | 
|  | std::cout << "     " | 
|  | << ((singVals(j) + dk) * (mus(j) + (shifts(j) - dk))) / ((diag(i) + dk) * (diag(i) - dk)) | 
|  | << " == (" << (singVals(j) + dk) << " * " << (mus(j) + (shifts(j) - dk)) << ") / (" | 
|  | << (diag(i) + dk) << " * " << (diag(i) - dk) << ")\n"; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "zhat(" << k << ") =  sqrt( " << prod << ")  ;  " << (singVals(lastIdx) + dk) << " * " | 
|  | << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n"; | 
|  | #endif | 
|  | RealScalar tmp = sqrt(prod); | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert((numext::isfinite)(tmp)); | 
|  | #endif | 
|  | zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // compute singular vectors | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, | 
|  | const VectorType& singVals, const ArrayRef& shifts, | 
|  | const ArrayRef& mus, MatrixXr& U, MatrixXr& V) { | 
|  | Index n = zhat.size(); | 
|  | Index m = perm.size(); | 
|  |  | 
|  | for (Index k = 0; k < n; ++k) { | 
|  | if (numext::is_exactly_zero(zhat(k))) { | 
|  | U.col(k) = VectorType::Unit(n + 1, k); | 
|  | if (m_compV) V.col(k) = VectorType::Unit(n, k); | 
|  | } else { | 
|  | U.col(k).setZero(); | 
|  | for (Index l = 0; l < m; ++l) { | 
|  | Index i = perm(l); | 
|  | U(i, k) = zhat(i) / (((diag(i) - shifts(k)) - mus(k))) / ((diag(i) + singVals[k])); | 
|  | } | 
|  | U(n, k) = Literal(0); | 
|  | U.col(k).normalize(); | 
|  |  | 
|  | if (m_compV) { | 
|  | V.col(k).setZero(); | 
|  | for (Index l = 1; l < m; ++l) { | 
|  | Index i = perm(l); | 
|  | V(i, k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k))) / ((diag(i) + singVals[k])); | 
|  | } | 
|  | V(0, k) = Literal(-1); | 
|  | V.col(k).normalize(); | 
|  | } | 
|  | } | 
|  | } | 
|  | U.col(n) = VectorType::Unit(n + 1, n); | 
|  | } | 
|  |  | 
|  | // page 12_13 | 
|  | // i >= 1, di almost null and zi non null. | 
|  | // We use a rotation to zero out zi applied to the left of M, and set di = 0. | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::deflation43(Index firstCol, Index shift, Index i, Index size) { | 
|  | using std::abs; | 
|  | using std::pow; | 
|  | using std::sqrt; | 
|  | Index start = firstCol + shift; | 
|  | RealScalar c = m_computed(start, start); | 
|  | RealScalar s = m_computed(start + i, start); | 
|  | RealScalar r = numext::hypot(c, s); | 
|  | if (numext::is_exactly_zero(r)) { | 
|  | m_computed(start + i, start + i) = Literal(0); | 
|  | return; | 
|  | } | 
|  | m_computed(start, start) = r; | 
|  | m_computed(start + i, start) = Literal(0); | 
|  | m_computed(start + i, start + i) = Literal(0); | 
|  |  | 
|  | JacobiRotation<RealScalar> J(c / r, -s / r); | 
|  | if (m_compU) | 
|  | m_naiveU.middleRows(firstCol, size + 1).applyOnTheRight(firstCol, firstCol + i, J); | 
|  | else | 
|  | m_naiveU.applyOnTheRight(firstCol, firstCol + i, J); | 
|  | }  // end deflation 43 | 
|  |  | 
|  | // page 13 | 
|  | // i,j >= 1, i > j, and |di - dj| < epsilon * norm2(M) | 
|  | // We apply two rotations to have zi = 0, and dj = di. | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::deflation44(Index firstColu, Index firstColm, Index firstRowW, Index firstColW, | 
|  | Index i, Index j, Index size) { | 
|  | using std::abs; | 
|  | using std::conj; | 
|  | using std::pow; | 
|  | using std::sqrt; | 
|  |  | 
|  | RealScalar s = m_computed(firstColm + i, firstColm); | 
|  | RealScalar c = m_computed(firstColm + j, firstColm); | 
|  | RealScalar r = numext::hypot(c, s); | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; " | 
|  | << m_computed(firstColm + i - 1, firstColm) << " " << m_computed(firstColm + i, firstColm) << " " | 
|  | << m_computed(firstColm + i + 1, firstColm) << " " << m_computed(firstColm + i + 2, firstColm) << "\n"; | 
|  | std::cout << m_computed(firstColm + i - 1, firstColm + i - 1) << " " << m_computed(firstColm + i, firstColm + i) | 
|  | << " " << m_computed(firstColm + i + 1, firstColm + i + 1) << " " | 
|  | << m_computed(firstColm + i + 2, firstColm + i + 2) << "\n"; | 
|  | #endif | 
|  | if (numext::is_exactly_zero(r)) { | 
|  | m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); | 
|  | return; | 
|  | } | 
|  | c /= r; | 
|  | s /= r; | 
|  | m_computed(firstColm + j, firstColm) = r; | 
|  | m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); | 
|  | m_computed(firstColm + i, firstColm) = Literal(0); | 
|  |  | 
|  | JacobiRotation<RealScalar> J(c, -s); | 
|  | if (m_compU) | 
|  | m_naiveU.middleRows(firstColu, size + 1).applyOnTheRight(firstColu + j, firstColu + i, J); | 
|  | else | 
|  | m_naiveU.applyOnTheRight(firstColu + j, firstColu + i, J); | 
|  | if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + j, firstColW + i, J); | 
|  | }  // end deflation 44 | 
|  |  | 
|  | // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] | 
|  | template <typename MatrixType, int Options> | 
|  | void BDCSVD<MatrixType, Options>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, | 
|  | Index shift) { | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | const Index length = lastCol + 1 - firstCol; | 
|  |  | 
|  | Block<MatrixXr, Dynamic, 1> col0(m_computed, firstCol + shift, firstCol + shift, length, 1); | 
|  | Diagonal<MatrixXr> fulldiag(m_computed); | 
|  | VectorBlock<Diagonal<MatrixXr>, Dynamic> diag(fulldiag, firstCol + shift, length); | 
|  |  | 
|  | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); | 
|  | RealScalar maxDiag = diag.tail((std::max)(Index(1), length - 1)).cwiseAbs().maxCoeff(); | 
|  | RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero, NumTraits<RealScalar>::epsilon() * maxDiag); | 
|  | RealScalar epsilon_coarse = | 
|  | Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag); | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(m_naiveU.allFinite()); | 
|  | eigen_internal_assert(m_naiveV.allFinite()); | 
|  | eigen_internal_assert(m_computed.allFinite()); | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "\ndeflate:" << diag.head(k + 1).transpose() << "  |  " | 
|  | << diag.segment(k + 1, length - k - 1).transpose() << "\n"; | 
|  | #endif | 
|  |  | 
|  | // condition 4.1 | 
|  | if (diag(0) < epsilon_coarse) { | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n"; | 
|  | #endif | 
|  | diag(0) = epsilon_coarse; | 
|  | } | 
|  |  | 
|  | // condition 4.2 | 
|  | for (Index i = 1; i < length; ++i) | 
|  | if (abs(col0(i)) < epsilon_strict) { | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict | 
|  | << "  (diag(" << i << ")=" << diag(i) << ")\n"; | 
|  | #endif | 
|  | col0(i) = Literal(0); | 
|  | } | 
|  |  | 
|  | // condition 4.3 | 
|  | for (Index i = 1; i < length; i++) | 
|  | if (diag(i) < epsilon_coarse) { | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) | 
|  | << " < " << epsilon_coarse << "\n"; | 
|  | #endif | 
|  | deflation43(firstCol, shift, i, length); | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(m_naiveU.allFinite()); | 
|  | eigen_internal_assert(m_naiveV.allFinite()); | 
|  | eigen_internal_assert(m_computed.allFinite()); | 
|  | #endif | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "to be sorted: " << diag.transpose() << "\n\n"; | 
|  | std::cout << "            : " << col0.transpose() << "\n\n"; | 
|  | #endif | 
|  | { | 
|  | // Check for total deflation: | 
|  | // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting. | 
|  | const bool total_deflation = (col0.tail(length - 1).array().abs() < considerZero).all(); | 
|  |  | 
|  | // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge. | 
|  | // First, compute the respective permutation. | 
|  | Index* permutation = m_workspaceI.data(); | 
|  | { | 
|  | permutation[0] = 0; | 
|  | Index p = 1; | 
|  |  | 
|  | // Move deflated diagonal entries at the end. | 
|  | for (Index i = 1; i < length; ++i) | 
|  | if (diag(i) < considerZero) permutation[p++] = i; | 
|  |  | 
|  | Index i = 1, j = k + 1; | 
|  | for (; p < length; ++p) { | 
|  | if (i > k) | 
|  | permutation[p] = j++; | 
|  | else if (j >= length) | 
|  | permutation[p] = i++; | 
|  | else if (diag(i) < diag(j)) | 
|  | permutation[p] = j++; | 
|  | else | 
|  | permutation[p] = i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have a total deflation, then we have to insert diag(0) at the right place | 
|  | if (total_deflation) { | 
|  | for (Index i = 1; i < length; ++i) { | 
|  | Index pi = permutation[i]; | 
|  | if (diag(pi) < considerZero || diag(0) < diag(pi)) | 
|  | permutation[i - 1] = permutation[i]; | 
|  | else { | 
|  | permutation[i - 1] = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Current index of each col, and current column of each index | 
|  | Index* realInd = m_workspaceI.data() + length; | 
|  | Index* realCol = m_workspaceI.data() + 2 * length; | 
|  |  | 
|  | for (int pos = 0; pos < length; pos++) { | 
|  | realCol[pos] = pos; | 
|  | realInd[pos] = pos; | 
|  | } | 
|  |  | 
|  | for (Index i = total_deflation ? 0 : 1; i < length; i++) { | 
|  | const Index pi = permutation[length - (total_deflation ? i + 1 : i)]; | 
|  | const Index J = realCol[pi]; | 
|  |  | 
|  | using std::swap; | 
|  | // swap diagonal and first column entries: | 
|  | swap(diag(i), diag(J)); | 
|  | if (i != 0 && J != 0) swap(col0(i), col0(J)); | 
|  |  | 
|  | // change columns | 
|  | if (m_compU) | 
|  | m_naiveU.col(firstCol + i) | 
|  | .segment(firstCol, length + 1) | 
|  | .swap(m_naiveU.col(firstCol + J).segment(firstCol, length + 1)); | 
|  | else | 
|  | m_naiveU.col(firstCol + i).segment(0, 2).swap(m_naiveU.col(firstCol + J).segment(0, 2)); | 
|  | if (m_compV) | 
|  | m_naiveV.col(firstColW + i) | 
|  | .segment(firstRowW, length) | 
|  | .swap(m_naiveV.col(firstColW + J).segment(firstRowW, length)); | 
|  |  | 
|  | // update real pos | 
|  | const Index realI = realInd[i]; | 
|  | realCol[realI] = J; | 
|  | realCol[pi] = i; | 
|  | realInd[J] = realI; | 
|  | realInd[i] = pi; | 
|  | } | 
|  | } | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n"; | 
|  | std::cout << "      : " << col0.transpose() << "\n\n"; | 
|  | #endif | 
|  |  | 
|  | // condition 4.4 | 
|  | { | 
|  | Index i = length - 1; | 
|  | // Find last non-deflated entry. | 
|  | while (i > 0 && (diag(i) < considerZero || abs(col0(i)) < considerZero)) --i; | 
|  |  | 
|  | for (; i > 1; --i) | 
|  | if ((diag(i) - diag(i - 1)) < epsilon_strict) { | 
|  | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE | 
|  | std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i - 1) | 
|  | << " == " << (diag(i) - diag(i - 1)) << " < " << epsilon_strict << "\n"; | 
|  | #endif | 
|  | eigen_internal_assert(abs(diag(i) - diag(i - 1)) < epsilon_coarse && | 
|  | " diagonal entries are not properly sorted"); | 
|  | deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i, i - 1, length); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | for (Index j = 2; j < length; ++j) eigen_internal_assert(diag(j - 1) <= diag(j) || abs(diag(j)) < considerZero); | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_BDCSVD_SANITY_CHECKS | 
|  | eigen_internal_assert(m_naiveU.allFinite()); | 
|  | eigen_internal_assert(m_naiveV.allFinite()); | 
|  | eigen_internal_assert(m_computed.allFinite()); | 
|  | #endif | 
|  | }  // end deflation | 
|  |  | 
|  | /** \svd_module | 
|  | * | 
|  | * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm | 
|  | * | 
|  | * \sa class BDCSVD | 
|  | */ | 
|  | template <typename Derived> | 
|  | template <int Options> | 
|  | BDCSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::bdcSvd() const { | 
|  | return BDCSVD<PlainObject, Options>(*this); | 
|  | } | 
|  |  | 
|  | /** \svd_module | 
|  | * | 
|  | * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm | 
|  | * | 
|  | * \sa class BDCSVD | 
|  | */ | 
|  | template <typename Derived> | 
|  | template <int Options> | 
|  | BDCSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::bdcSvd( | 
|  | unsigned int computationOptions) const { | 
|  | return BDCSVD<PlainObject, Options>(*this, computationOptions); | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif |