|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SPARSEVIEW_H | 
|  | #define EIGEN_SPARSEVIEW_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename MatrixType> | 
|  | struct traits<SparseView<MatrixType> > : traits<MatrixType> { | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef Sparse StorageKind; | 
|  | enum { Flags = int(traits<MatrixType>::Flags) & (RowMajorBit) }; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \ingroup SparseCore_Module | 
|  | * \class SparseView | 
|  | * | 
|  | * \brief Expression of a dense or sparse matrix with zero or too small values removed | 
|  | * | 
|  | * \tparam MatrixType the type of the object of which we are removing the small entries | 
|  | * | 
|  | * This class represents an expression of a given dense or sparse matrix with | 
|  | * entries smaller than \c reference * \c epsilon are removed. | 
|  | * It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned() | 
|  | * and most of the time this is the only way it is used. | 
|  | * | 
|  | * \sa MatrixBase::sparseView(), SparseMatrixBase::pruned() | 
|  | */ | 
|  | template <typename MatrixType> | 
|  | class SparseView : public SparseMatrixBase<SparseView<MatrixType> > { | 
|  | typedef typename MatrixType::Nested MatrixTypeNested; | 
|  | typedef internal::remove_all_t<MatrixTypeNested> MatrixTypeNested_; | 
|  | typedef SparseMatrixBase<SparseView> Base; | 
|  |  | 
|  | public: | 
|  | EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView) | 
|  | typedef internal::remove_all_t<MatrixType> NestedExpression; | 
|  |  | 
|  | explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0), | 
|  | const RealScalar& epsilon = NumTraits<Scalar>::dummy_precision()) | 
|  | : m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {} | 
|  |  | 
|  | inline Index rows() const { return m_matrix.rows(); } | 
|  | inline Index cols() const { return m_matrix.cols(); } | 
|  |  | 
|  | inline Index innerSize() const { return m_matrix.innerSize(); } | 
|  | inline Index outerSize() const { return m_matrix.outerSize(); } | 
|  |  | 
|  | /** \returns the nested expression */ | 
|  | const internal::remove_all_t<MatrixTypeNested>& nestedExpression() const { return m_matrix; } | 
|  |  | 
|  | Scalar reference() const { return m_reference; } | 
|  | RealScalar epsilon() const { return m_epsilon; } | 
|  |  | 
|  | protected: | 
|  | MatrixTypeNested m_matrix; | 
|  | Scalar m_reference; | 
|  | RealScalar m_epsilon; | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // TODO find a way to unify the two following variants | 
|  | // This is tricky because implementing an inner iterator on top of an IndexBased evaluator is | 
|  | // not easy because the evaluators do not expose the sizes of the underlying expression. | 
|  |  | 
|  | template <typename ArgType> | 
|  | struct unary_evaluator<SparseView<ArgType>, IteratorBased> : public evaluator_base<SparseView<ArgType> > { | 
|  | typedef typename evaluator<ArgType>::InnerIterator EvalIterator; | 
|  |  | 
|  | public: | 
|  | typedef SparseView<ArgType> XprType; | 
|  |  | 
|  | class InnerIterator : public EvalIterator { | 
|  | protected: | 
|  | typedef typename XprType::Scalar Scalar; | 
|  |  | 
|  | public: | 
|  | EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) | 
|  | : EvalIterator(sve.m_argImpl, outer), m_view(sve.m_view) { | 
|  | incrementToNonZero(); | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE InnerIterator& operator++() { | 
|  | EvalIterator::operator++(); | 
|  | incrementToNonZero(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | using EvalIterator::value; | 
|  |  | 
|  | protected: | 
|  | const XprType& m_view; | 
|  |  | 
|  | private: | 
|  | void incrementToNonZero() { | 
|  | while ((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon())) { | 
|  | EvalIterator::operator++(); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | enum { CoeffReadCost = evaluator<ArgType>::CoeffReadCost, Flags = XprType::Flags }; | 
|  |  | 
|  | explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} | 
|  |  | 
|  | protected: | 
|  | evaluator<ArgType> m_argImpl; | 
|  | const XprType& m_view; | 
|  | }; | 
|  |  | 
|  | template <typename ArgType> | 
|  | struct unary_evaluator<SparseView<ArgType>, IndexBased> : public evaluator_base<SparseView<ArgType> > { | 
|  | public: | 
|  | typedef SparseView<ArgType> XprType; | 
|  |  | 
|  | protected: | 
|  | enum { IsRowMajor = (XprType::Flags & RowMajorBit) == RowMajorBit }; | 
|  | typedef typename XprType::Scalar Scalar; | 
|  | typedef typename XprType::StorageIndex StorageIndex; | 
|  |  | 
|  | public: | 
|  | class InnerIterator { | 
|  | public: | 
|  | EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) | 
|  | : m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize()) { | 
|  | incrementToNonZero(); | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE InnerIterator& operator++() { | 
|  | m_inner++; | 
|  | incrementToNonZero(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE Scalar value() const { | 
|  | return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner) : m_sve.m_argImpl.coeff(m_inner, m_outer); | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; } | 
|  | inline Index row() const { return IsRowMajor ? m_outer : index(); } | 
|  | inline Index col() const { return IsRowMajor ? index() : m_outer; } | 
|  |  | 
|  | EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner >= 0; } | 
|  |  | 
|  | protected: | 
|  | const unary_evaluator& m_sve; | 
|  | Index m_inner; | 
|  | const Index m_outer; | 
|  | const Index m_end; | 
|  |  | 
|  | private: | 
|  | void incrementToNonZero() { | 
|  | while ((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon())) { | 
|  | m_inner++; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | enum { CoeffReadCost = evaluator<ArgType>::CoeffReadCost, Flags = XprType::Flags }; | 
|  |  | 
|  | explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} | 
|  |  | 
|  | protected: | 
|  | evaluator<ArgType> m_argImpl; | 
|  | const XprType& m_view; | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \ingroup SparseCore_Module | 
|  | * | 
|  | * \returns a sparse expression of the dense expression \c *this with values smaller than | 
|  | * \a reference * \a epsilon removed. | 
|  | * | 
|  | * This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c | 
|  | * S: \code MatrixXd D(n,m); SparseMatrix<double> S; S = D.sparseView();             // suppress numerical zeros (exact) | 
|  | * S = D.sparseView(reference); | 
|  | * S = D.sparseView(reference,epsilon); | 
|  | * \endcode | 
|  | * where \a reference is a meaningful non zero reference value, | 
|  | * and \a epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision(). | 
|  | * | 
|  | * \sa SparseMatrixBase::pruned(), class SparseView */ | 
|  | template <typename Derived> | 
|  | const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& reference, | 
|  | const typename NumTraits<Scalar>::Real& epsilon) const { | 
|  | return SparseView<Derived>(derived(), reference, epsilon); | 
|  | } | 
|  |  | 
|  | /** \returns an expression of \c *this with values smaller than | 
|  | * \a reference * \a epsilon removed. | 
|  | * | 
|  | * This method is typically used in conjunction with the product of two sparse matrices | 
|  | * to automatically prune the smallest values as follows: | 
|  | * \code | 
|  | * C = (A*B).pruned();             // suppress numerical zeros (exact) | 
|  | * C = (A*B).pruned(ref); | 
|  | * C = (A*B).pruned(ref,epsilon); | 
|  | * \endcode | 
|  | * where \c ref is a meaningful non zero reference value. | 
|  | * */ | 
|  | template <typename Derived> | 
|  | const SparseView<Derived> SparseMatrixBase<Derived>::pruned(const Scalar& reference, const RealScalar& epsilon) const { | 
|  | return SparseView<Derived>(derived(), reference, epsilon); | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif |