|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SPARSE_LU_H | 
|  | #define EIGEN_SPARSE_LU_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template <typename MatrixType_, typename OrderingType_ = COLAMDOrdering<typename MatrixType_::StorageIndex>> | 
|  | class SparseLU; | 
|  | template <typename MappedSparseMatrixType> | 
|  | struct SparseLUMatrixLReturnType; | 
|  | template <typename MatrixLType, typename MatrixUType> | 
|  | struct SparseLUMatrixUReturnType; | 
|  |  | 
|  | template <bool Conjugate, class SparseLUType> | 
|  | class SparseLUTransposeView : public SparseSolverBase<SparseLUTransposeView<Conjugate, SparseLUType>> { | 
|  | protected: | 
|  | typedef SparseSolverBase<SparseLUTransposeView<Conjugate, SparseLUType>> APIBase; | 
|  | using APIBase::m_isInitialized; | 
|  |  | 
|  | public: | 
|  | typedef typename SparseLUType::Scalar Scalar; | 
|  | typedef typename SparseLUType::StorageIndex StorageIndex; | 
|  | typedef typename SparseLUType::MatrixType MatrixType; | 
|  | typedef typename SparseLUType::OrderingType OrderingType; | 
|  |  | 
|  | enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; | 
|  |  | 
|  | SparseLUTransposeView() : APIBase(), m_sparseLU(NULL) {} | 
|  | SparseLUTransposeView(const SparseLUTransposeView& view) : APIBase() { | 
|  | this->m_sparseLU = view.m_sparseLU; | 
|  | this->m_isInitialized = view.m_isInitialized; | 
|  | } | 
|  | void setIsInitialized(const bool isInitialized) { this->m_isInitialized = isInitialized; } | 
|  | void setSparseLU(SparseLUType* sparseLU) { m_sparseLU = sparseLU; } | 
|  | using APIBase::_solve_impl; | 
|  | template <typename Rhs, typename Dest> | 
|  | bool _solve_impl(const MatrixBase<Rhs>& B, MatrixBase<Dest>& X_base) const { | 
|  | Dest& X(X_base.derived()); | 
|  | eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first"); | 
|  | EIGEN_STATIC_ASSERT((Dest::Flags & RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
|  |  | 
|  | // this ugly const_cast_derived() helps to detect aliasing when applying the permutations | 
|  | for (Index j = 0; j < B.cols(); ++j) { | 
|  | X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j); | 
|  | } | 
|  | // Forward substitution with transposed or adjoint of U | 
|  | m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X); | 
|  |  | 
|  | // Backward substitution with transposed or adjoint of L | 
|  | m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X); | 
|  |  | 
|  | // Permute back the solution | 
|  | for (Index j = 0; j < B.cols(); ++j) X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j); | 
|  | return true; | 
|  | } | 
|  | inline Index rows() const { return m_sparseLU->rows(); } | 
|  | inline Index cols() const { return m_sparseLU->cols(); } | 
|  |  | 
|  | private: | 
|  | SparseLUType* m_sparseLU; | 
|  | SparseLUTransposeView& operator=(const SparseLUTransposeView&); | 
|  | }; | 
|  |  | 
|  | /** \ingroup SparseLU_Module | 
|  | * \class SparseLU | 
|  | * | 
|  | * \brief Sparse supernodal LU factorization for general matrices | 
|  | * | 
|  | * This class implements the supernodal LU factorization for general matrices. | 
|  | * It uses the main techniques from the sequential SuperLU package | 
|  | * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real | 
|  | * and complex arithmetic with single and double precision, depending on the | 
|  | * scalar type of your input matrix. | 
|  | * The code has been optimized to provide BLAS-3 operations during supernode-panel updates. | 
|  | * It benefits directly from the built-in high-performant Eigen BLAS routines. | 
|  | * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to | 
|  | * enable a better optimization from the compiler. For best performance, | 
|  | * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors. | 
|  | * | 
|  | * An important parameter of this class is the ordering method. It is used to reorder the columns | 
|  | * (and eventually the rows) of the matrix to reduce the number of new elements that are created during | 
|  | * numerical factorization. The cheapest method available is COLAMD. | 
|  | * See  \link OrderingMethods_Module the OrderingMethods module \endlink for the list of | 
|  | * built-in and external ordering methods. | 
|  | * | 
|  | * Simple example with key steps | 
|  | * \code | 
|  | * VectorXd x(n), b(n); | 
|  | * SparseMatrix<double> A; | 
|  | * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver; | 
|  | * // Fill A and b. | 
|  | * // Compute the ordering permutation vector from the structural pattern of A. | 
|  | * solver.analyzePattern(A); | 
|  | * // Compute the numerical factorization. | 
|  | * solver.factorize(A); | 
|  | * // Use the factors to solve the linear system. | 
|  | * x = solver.solve(b); | 
|  | * \endcode | 
|  | * | 
|  | * We can directly call compute() instead of analyzePattern() and factorize() | 
|  | * \code | 
|  | * VectorXd x(n), b(n); | 
|  | * SparseMatrix<double> A; | 
|  | * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver; | 
|  | * // Fill A and b. | 
|  | * solver.compute(A); | 
|  | * // Use the factors to solve the linear system. | 
|  | * x = solver.solve(b); | 
|  | * \endcode | 
|  | * | 
|  | * Or give the matrix to the constructor SparseLU(const MatrixType& matrix) | 
|  | * \code | 
|  | * VectorXd x(n), b(n); | 
|  | * SparseMatrix<double> A; | 
|  | * // Fill A and b. | 
|  | * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver(A); | 
|  | * // Use the factors to solve the linear system. | 
|  | * x = solver.solve(b); | 
|  | * \endcode | 
|  | * | 
|  | * \warning The input matrix A should be in a \b compressed and \b column-major form. | 
|  | * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. | 
|  | * | 
|  | * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix. | 
|  | * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization. | 
|  | * If this is the case for your matrices, you can try the basic scaling method at | 
|  | *  "unsupported/Eigen/src/IterativeSolvers/Scaling.h" | 
|  | * | 
|  | * \tparam MatrixType_ The type of the sparse matrix. It must be a column-major SparseMatrix<> | 
|  | * \tparam OrderingType_ The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa \ref TutorialSparseSolverConcept | 
|  | * \sa \ref OrderingMethods_Module | 
|  | */ | 
|  | template <typename MatrixType_, typename OrderingType_> | 
|  | class SparseLU : public SparseSolverBase<SparseLU<MatrixType_, OrderingType_>>, | 
|  | public internal::SparseLUImpl<typename MatrixType_::Scalar, typename MatrixType_::StorageIndex> { | 
|  | protected: | 
|  | typedef SparseSolverBase<SparseLU<MatrixType_, OrderingType_>> APIBase; | 
|  | using APIBase::m_isInitialized; | 
|  |  | 
|  | public: | 
|  | using APIBase::_solve_impl; | 
|  |  | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef OrderingType_ OrderingType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef SparseMatrix<Scalar, ColMajor, StorageIndex> NCMatrix; | 
|  | typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix; | 
|  | typedef Matrix<Scalar, Dynamic, 1> ScalarVector; | 
|  | typedef Matrix<StorageIndex, Dynamic, 1> IndexVector; | 
|  | typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType; | 
|  | typedef internal::SparseLUImpl<Scalar, StorageIndex> Base; | 
|  |  | 
|  | enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; | 
|  |  | 
|  | public: | 
|  | /** \brief Basic constructor of the solver. | 
|  | * | 
|  | * Construct a SparseLU. As no matrix is given as argument, compute() should be called afterward with a matrix. | 
|  | */ | 
|  | SparseLU() | 
|  | : m_lastError(""), m_Ustore(0, 0, 0, 0, 0, 0), m_symmetricmode(false), m_diagpivotthresh(1.0), m_detPermR(1) { | 
|  | initperfvalues(); | 
|  | } | 
|  | /** \brief Constructor of the solver already based on a specific matrix. | 
|  | * | 
|  | * Construct a SparseLU. compute() is already called with the given matrix. | 
|  | */ | 
|  | explicit SparseLU(const MatrixType& matrix) | 
|  | : m_lastError(""), m_Ustore(0, 0, 0, 0, 0, 0), m_symmetricmode(false), m_diagpivotthresh(1.0), m_detPermR(1) { | 
|  | initperfvalues(); | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | ~SparseLU() { | 
|  | // Free all explicit dynamic pointers | 
|  | } | 
|  |  | 
|  | void analyzePattern(const MatrixType& matrix); | 
|  | void factorize(const MatrixType& matrix); | 
|  | void simplicialfactorize(const MatrixType& matrix); | 
|  |  | 
|  | /** \brief Analyze and factorize the matrix so the solver is ready to solve. | 
|  | * | 
|  | * Compute the symbolic and numeric factorization of the input sparse matrix. | 
|  | * The input matrix should be in column-major storage, otherwise analyzePattern() | 
|  | * will do a heavy copy. | 
|  | * | 
|  | * Call analyzePattern() followed by factorize() | 
|  | * | 
|  | * \sa analyzePattern(), factorize() | 
|  | */ | 
|  | void compute(const MatrixType& matrix) { | 
|  | // Analyze | 
|  | analyzePattern(matrix); | 
|  | // Factorize | 
|  | factorize(matrix); | 
|  | } | 
|  |  | 
|  | /** \brief Return a solver for the transposed matrix. | 
|  | * | 
|  | * \returns an expression of the transposed of the factored matrix. | 
|  | * | 
|  | * A typical usage is to solve for the transposed problem A^T x = b: | 
|  | * \code | 
|  | * solver.compute(A); | 
|  | * x = solver.transpose().solve(b); | 
|  | * \endcode | 
|  | * | 
|  | * \sa adjoint(), solve() | 
|  | */ | 
|  | const SparseLUTransposeView<false, SparseLU<MatrixType_, OrderingType_>> transpose() { | 
|  | SparseLUTransposeView<false, SparseLU<MatrixType_, OrderingType_>> transposeView; | 
|  | transposeView.setSparseLU(this); | 
|  | transposeView.setIsInitialized(this->m_isInitialized); | 
|  | return transposeView; | 
|  | } | 
|  |  | 
|  | /** \brief Return a solver for the adjointed matrix. | 
|  | * | 
|  | * \returns an expression of the adjoint of the factored matrix | 
|  | * | 
|  | * A typical usage is to solve for the adjoint problem A' x = b: | 
|  | * \code | 
|  | * solver.compute(A); | 
|  | * x = solver.adjoint().solve(b); | 
|  | * \endcode | 
|  | * | 
|  | * For real scalar types, this function is equivalent to transpose(). | 
|  | * | 
|  | * \sa transpose(), solve() | 
|  | */ | 
|  | const SparseLUTransposeView<true, SparseLU<MatrixType_, OrderingType_>> adjoint() { | 
|  | SparseLUTransposeView<true, SparseLU<MatrixType_, OrderingType_>> adjointView; | 
|  | adjointView.setSparseLU(this); | 
|  | adjointView.setIsInitialized(this->m_isInitialized); | 
|  | return adjointView; | 
|  | } | 
|  |  | 
|  | /** \brief Give the number of rows. | 
|  | */ | 
|  | inline Index rows() const { return m_mat.rows(); } | 
|  | /** \brief Give the number of columns. | 
|  | */ | 
|  | inline Index cols() const { return m_mat.cols(); } | 
|  | /** \brief Let you set that the pattern of the input matrix is symmetric | 
|  | */ | 
|  | void isSymmetric(bool sym) { m_symmetricmode = sym; } | 
|  |  | 
|  | /** \brief Give the matrixL | 
|  | * | 
|  | * \returns an expression of the matrix L, internally stored as supernodes | 
|  | * The only operation available with this expression is the triangular solve | 
|  | * \code | 
|  | * y = b; matrixL().solveInPlace(y); | 
|  | * \endcode | 
|  | */ | 
|  | SparseLUMatrixLReturnType<SCMatrix> matrixL() const { return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore); } | 
|  | /** \brief Give the MatrixU | 
|  | * | 
|  | * \returns an expression of the matrix U, | 
|  | * The only operation available with this expression is the triangular solve | 
|  | * \code | 
|  | * y = b; matrixU().solveInPlace(y); | 
|  | * \endcode | 
|  | */ | 
|  | SparseLUMatrixUReturnType<SCMatrix, Map<SparseMatrix<Scalar, ColMajor, StorageIndex>>> matrixU() const { | 
|  | return SparseLUMatrixUReturnType<SCMatrix, Map<SparseMatrix<Scalar, ColMajor, StorageIndex>>>(m_Lstore, m_Ustore); | 
|  | } | 
|  |  | 
|  | /** \brief Give the row matrix permutation. | 
|  | * | 
|  | * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$ | 
|  | * \sa colsPermutation() | 
|  | */ | 
|  | inline const PermutationType& rowsPermutation() const { return m_perm_r; } | 
|  | /** \brief Give the column matrix permutation. | 
|  | * | 
|  | * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$ | 
|  | * \sa rowsPermutation() | 
|  | */ | 
|  | inline const PermutationType& colsPermutation() const { return m_perm_c; } | 
|  | /** Set the threshold used for a diagonal entry to be an acceptable pivot. */ | 
|  | void setPivotThreshold(const RealScalar& thresh) { m_diagpivotthresh = thresh; } | 
|  |  | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \brief Solve a system \f$ A X = B \f$ | 
|  | * | 
|  | * \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. | 
|  | * | 
|  | * \warning the destination matrix X in X = this->solve(B) must be colmun-major. | 
|  | * | 
|  | * \sa compute() | 
|  | */ | 
|  | template <typename Rhs> | 
|  | inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const; | 
|  | #endif  // EIGEN_PARSED_BY_DOXYGEN | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance | 
|  | *          \c InvalidInput if the input matrix is invalid | 
|  | * | 
|  | * You can get a readable error message with lastErrorMessage(). | 
|  | * | 
|  | * \sa lastErrorMessage() | 
|  | */ | 
|  | ComputationInfo info() const { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \brief Give a human readable error | 
|  | * | 
|  | * \returns A string describing the type of error | 
|  | */ | 
|  | std::string lastErrorMessage() const { return m_lastError; } | 
|  |  | 
|  | template <typename Rhs, typename Dest> | 
|  | bool _solve_impl(const MatrixBase<Rhs>& B, MatrixBase<Dest>& X_base) const { | 
|  | Dest& X(X_base.derived()); | 
|  | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first"); | 
|  | EIGEN_STATIC_ASSERT((Dest::Flags & RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); | 
|  |  | 
|  | // Permute the right hand side to form X = Pr*B | 
|  | // on return, X is overwritten by the computed solution | 
|  | X.resize(B.rows(), B.cols()); | 
|  |  | 
|  | // this ugly const_cast_derived() helps to detect aliasing when applying the permutations | 
|  | for (Index j = 0; j < B.cols(); ++j) X.col(j) = rowsPermutation() * B.const_cast_derived().col(j); | 
|  |  | 
|  | // Forward substitution with L | 
|  | this->matrixL().solveInPlace(X); | 
|  | this->matrixU().solveInPlace(X); | 
|  |  | 
|  | // Permute back the solution | 
|  | for (Index j = 0; j < B.cols(); ++j) X.col(j) = colsPermutation().inverse() * X.col(j); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** \brief Give the absolute value of the determinant. | 
|  | * | 
|  | * \returns the absolute value of the determinant of the matrix of which | 
|  | * *this is the QR decomposition. | 
|  | * | 
|  | * \warning a determinant can be very big or small, so for matrices | 
|  | * of large enough dimension, there is a risk of overflow/underflow. | 
|  | * One way to work around that is to use logAbsDeterminant() instead. | 
|  | * | 
|  | * \sa logAbsDeterminant(), signDeterminant() | 
|  | */ | 
|  | Scalar absDeterminant() { | 
|  | using std::abs; | 
|  | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); | 
|  | // Initialize with the determinant of the row matrix | 
|  | Scalar det = Scalar(1.); | 
|  | // Note that the diagonal blocks of U are stored in supernodes, | 
|  | // which are available in the  L part :) | 
|  | for (Index j = 0; j < this->cols(); ++j) { | 
|  | for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) { | 
|  | if (it.index() == j) { | 
|  | det *= abs(it.value()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return det; | 
|  | } | 
|  |  | 
|  | /** \brief Give the natural log of the absolute determinant. | 
|  | * | 
|  | * \returns the natural log of the absolute value of the determinant of the matrix | 
|  | * of which **this is the QR decomposition | 
|  | * | 
|  | * \note This method is useful to work around the risk of overflow/underflow that's | 
|  | * inherent to the determinant computation. | 
|  | * | 
|  | * \sa absDeterminant(), signDeterminant() | 
|  | */ | 
|  | Scalar logAbsDeterminant() const { | 
|  | using std::abs; | 
|  | using std::log; | 
|  |  | 
|  | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); | 
|  | Scalar det = Scalar(0.); | 
|  | for (Index j = 0; j < this->cols(); ++j) { | 
|  | for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) { | 
|  | if (it.row() < j) continue; | 
|  | if (it.row() == j) { | 
|  | det += log(abs(it.value())); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return det; | 
|  | } | 
|  |  | 
|  | /** \brief Give the sign of the determinant. | 
|  | * | 
|  | * \returns A number representing the sign of the determinant | 
|  | * | 
|  | * \sa absDeterminant(), logAbsDeterminant() | 
|  | */ | 
|  | Scalar signDeterminant() { | 
|  | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); | 
|  | // Initialize with the determinant of the row matrix | 
|  | Index det = 1; | 
|  | // Note that the diagonal blocks of U are stored in supernodes, | 
|  | // which are available in the  L part :) | 
|  | for (Index j = 0; j < this->cols(); ++j) { | 
|  | for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) { | 
|  | if (it.index() == j) { | 
|  | if (it.value() < 0) | 
|  | det = -det; | 
|  | else if (it.value() == 0) | 
|  | return 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return det * m_detPermR * m_detPermC; | 
|  | } | 
|  |  | 
|  | /** \brief Give the determinant. | 
|  | * | 
|  | * \returns The determinant of the matrix. | 
|  | * | 
|  | * \sa absDeterminant(), logAbsDeterminant() | 
|  | */ | 
|  | Scalar determinant() { | 
|  | eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); | 
|  | // Initialize with the determinant of the row matrix | 
|  | Scalar det = Scalar(1.); | 
|  | // Note that the diagonal blocks of U are stored in supernodes, | 
|  | // which are available in the  L part :) | 
|  | for (Index j = 0; j < this->cols(); ++j) { | 
|  | for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) { | 
|  | if (it.index() == j) { | 
|  | det *= it.value(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return (m_detPermR * m_detPermC) > 0 ? det : -det; | 
|  | } | 
|  |  | 
|  | /** \brief Give the number of non zero in matrix L. | 
|  | */ | 
|  | Index nnzL() const { return m_nnzL; } | 
|  | /** \brief Give the number of non zero in matrix U. | 
|  | */ | 
|  | Index nnzU() const { return m_nnzU; } | 
|  |  | 
|  | protected: | 
|  | // Functions | 
|  | void initperfvalues() { | 
|  | m_perfv.panel_size = 16; | 
|  | m_perfv.relax = 1; | 
|  | m_perfv.maxsuper = 128; | 
|  | m_perfv.rowblk = 16; | 
|  | m_perfv.colblk = 8; | 
|  | m_perfv.fillfactor = 20; | 
|  | } | 
|  |  | 
|  | // Variables | 
|  | mutable ComputationInfo m_info; | 
|  | bool m_factorizationIsOk; | 
|  | bool m_analysisIsOk; | 
|  | std::string m_lastError; | 
|  | NCMatrix m_mat;                                              // The input (permuted ) matrix | 
|  | SCMatrix m_Lstore;                                           // The lower triangular matrix (supernodal) | 
|  | Map<SparseMatrix<Scalar, ColMajor, StorageIndex>> m_Ustore;  // The upper triangular matrix | 
|  | PermutationType m_perm_c;                                    // Column permutation | 
|  | PermutationType m_perm_r;                                    // Row permutation | 
|  | IndexVector m_etree;                                         // Column elimination tree | 
|  |  | 
|  | typename Base::GlobalLU_t m_glu; | 
|  |  | 
|  | // SparseLU options | 
|  | bool m_symmetricmode; | 
|  | // values for performance | 
|  | internal::perfvalues m_perfv; | 
|  | RealScalar m_diagpivotthresh;  // Specifies the threshold used for a diagonal entry to be an acceptable pivot | 
|  | Index m_nnzL, m_nnzU;          // Nonzeros in L and U factors | 
|  | Index m_detPermR, m_detPermC;  // Determinants of the permutation matrices | 
|  | private: | 
|  | // Disable copy constructor | 
|  | SparseLU(const SparseLU&); | 
|  | };  // End class SparseLU | 
|  |  | 
|  | // Functions needed by the anaysis phase | 
|  | /** \brief Compute the column permutation. | 
|  | * | 
|  | * Compute the column permutation to minimize the fill-in | 
|  | * | 
|  | *  - Apply this permutation to the input matrix - | 
|  | * | 
|  | *  - Compute the column elimination tree on the permuted matrix | 
|  | * | 
|  | *  - Postorder the elimination tree and the column permutation | 
|  | * | 
|  | * It is possible to call compute() instead of analyzePattern() + factorize(). | 
|  | * | 
|  | * If the matrix is row-major this function will do an heavy copy. | 
|  | * | 
|  | * \sa factorize(), compute() | 
|  | */ | 
|  | template <typename MatrixType, typename OrderingType> | 
|  | void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat) { | 
|  | // TODO  It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat. | 
|  |  | 
|  | // Firstly, copy the whole input matrix. | 
|  | m_mat = mat; | 
|  |  | 
|  | // Compute fill-in ordering | 
|  | OrderingType ord; | 
|  | ord(m_mat, m_perm_c); | 
|  |  | 
|  | // Apply the permutation to the column of the input  matrix | 
|  | if (m_perm_c.size()) { | 
|  | m_mat.uncompress();  // NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This | 
|  | // vector is filled but not subsequently used. | 
|  | // Then, permute only the column pointers | 
|  | ei_declare_aligned_stack_constructed_variable( | 
|  | StorageIndex, outerIndexPtr, mat.cols() + 1, | 
|  | mat.isCompressed() ? const_cast<StorageIndex*>(mat.outerIndexPtr()) : 0); | 
|  |  | 
|  | // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is | 
|  | // thus needed. | 
|  | if (!mat.isCompressed()) | 
|  | IndexVector::Map(outerIndexPtr, mat.cols() + 1) = IndexVector::Map(m_mat.outerIndexPtr(), mat.cols() + 1); | 
|  |  | 
|  | // Apply the permutation and compute the nnz per column. | 
|  | for (Index i = 0; i < mat.cols(); i++) { | 
|  | m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; | 
|  | m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i + 1] - outerIndexPtr[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute the column elimination tree of the permuted matrix | 
|  | IndexVector firstRowElt; | 
|  | internal::coletree(m_mat, m_etree, firstRowElt); | 
|  |  | 
|  | // In symmetric mode, do not do postorder here | 
|  | if (!m_symmetricmode) { | 
|  | IndexVector post, iwork; | 
|  | // Post order etree | 
|  | internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post); | 
|  |  | 
|  | // Renumber etree in postorder | 
|  | Index m = m_mat.cols(); | 
|  | iwork.resize(m + 1); | 
|  | for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i)); | 
|  | m_etree = iwork; | 
|  |  | 
|  | // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree | 
|  | PermutationType post_perm(m); | 
|  | for (Index i = 0; i < m; i++) post_perm.indices()(i) = post(i); | 
|  |  | 
|  | // Combine the two permutations : postorder the permutation for future use | 
|  | if (m_perm_c.size()) { | 
|  | m_perm_c = post_perm * m_perm_c; | 
|  | } | 
|  |  | 
|  | }  // end postordering | 
|  |  | 
|  | m_analysisIsOk = true; | 
|  | } | 
|  |  | 
|  | // Functions needed by the numerical factorization phase | 
|  |  | 
|  | /** \brief Factorize the matrix to get the solver ready. | 
|  | * | 
|  | *  - Numerical factorization | 
|  | *  - Interleaved with the symbolic factorization | 
|  | * | 
|  | * To get error of this function you should check info(), you can get more info of | 
|  | * errors with lastErrorMessage(). | 
|  | * | 
|  | * In the past (before 2012 (git history is not older)), this function was returning an integer. | 
|  | * This exit was 0 if successful factorization. | 
|  | * > 0 if info = i, and i is been completed, but the factor U is exactly singular, | 
|  | * and division by zero will occur if it is used to solve a system of equation. | 
|  | * > A->ncol: number of bytes allocated when memory allocation failure occurred, plus A->ncol. | 
|  | * If lwork = -1, it is the estimated amount of space needed, plus A->ncol. | 
|  | * | 
|  | * It seems that A was the name of the matrix in the past. | 
|  | * | 
|  | * \sa analyzePattern(), compute(), SparseLU(), info(), lastErrorMessage() | 
|  | */ | 
|  | template <typename MatrixType, typename OrderingType> | 
|  | void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix) { | 
|  | using internal::emptyIdxLU; | 
|  | eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); | 
|  | eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices"); | 
|  |  | 
|  | m_isInitialized = true; | 
|  |  | 
|  | // Apply the column permutation computed in analyzepattern() | 
|  | //   m_mat = matrix * m_perm_c.inverse(); | 
|  | m_mat = matrix; | 
|  | if (m_perm_c.size()) { | 
|  | m_mat.uncompress();  // NOTE: The effect of this command is only to create the InnerNonzeros pointers. | 
|  | // Then, permute only the column pointers | 
|  | const StorageIndex* outerIndexPtr; | 
|  | if (matrix.isCompressed()) | 
|  | outerIndexPtr = matrix.outerIndexPtr(); | 
|  | else { | 
|  | StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols() + 1]; | 
|  | for (Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i]; | 
|  | outerIndexPtr = outerIndexPtr_t; | 
|  | } | 
|  | for (Index i = 0; i < matrix.cols(); i++) { | 
|  | m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; | 
|  | m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i + 1] - outerIndexPtr[i]; | 
|  | } | 
|  | if (!matrix.isCompressed()) delete[] outerIndexPtr; | 
|  | } else {  // FIXME This should not be needed if the empty permutation is handled transparently | 
|  | m_perm_c.resize(matrix.cols()); | 
|  | for (StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i; | 
|  | } | 
|  |  | 
|  | Index m = m_mat.rows(); | 
|  | Index n = m_mat.cols(); | 
|  | Index nnz = m_mat.nonZeros(); | 
|  | Index maxpanel = m_perfv.panel_size * m; | 
|  | // Allocate working storage common to the factor routines | 
|  | Index lwork = 0; | 
|  | // Return the size of actually allocated memory when allocation failed, | 
|  | // and 0 on success. | 
|  | Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu); | 
|  | if (info) { | 
|  | m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n"; | 
|  | m_factorizationIsOk = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Set up pointers for integer working arrays | 
|  | IndexVector segrep(m); | 
|  | segrep.setZero(); | 
|  | IndexVector parent(m); | 
|  | parent.setZero(); | 
|  | IndexVector xplore(m); | 
|  | xplore.setZero(); | 
|  | IndexVector repfnz(maxpanel); | 
|  | IndexVector panel_lsub(maxpanel); | 
|  | IndexVector xprune(n); | 
|  | xprune.setZero(); | 
|  | IndexVector marker(m * internal::LUNoMarker); | 
|  | marker.setZero(); | 
|  |  | 
|  | repfnz.setConstant(-1); | 
|  | panel_lsub.setConstant(-1); | 
|  |  | 
|  | // Set up pointers for scalar working arrays | 
|  | ScalarVector dense; | 
|  | dense.setZero(maxpanel); | 
|  | ScalarVector tempv; | 
|  | tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/ m)); | 
|  |  | 
|  | // Compute the inverse of perm_c | 
|  | PermutationType iperm_c(m_perm_c.inverse()); | 
|  |  | 
|  | // Identify initial relaxed snodes | 
|  | IndexVector relax_end(n); | 
|  | if (m_symmetricmode == true) | 
|  | Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); | 
|  | else | 
|  | Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); | 
|  |  | 
|  | m_perm_r.resize(m); | 
|  | m_perm_r.indices().setConstant(-1); | 
|  | marker.setConstant(-1); | 
|  | m_detPermR = 1;  // Record the determinant of the row permutation | 
|  |  | 
|  | m_glu.supno(0) = emptyIdxLU; | 
|  | m_glu.xsup.setConstant(0); | 
|  | m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0); | 
|  |  | 
|  | // Work on one 'panel' at a time. A panel is one of the following : | 
|  | //  (a) a relaxed supernode at the bottom of the etree, or | 
|  | //  (b) panel_size contiguous columns, <panel_size> defined by the user | 
|  | Index jcol; | 
|  | Index pivrow;  // Pivotal row number in the original row matrix | 
|  | Index nseg1;   // Number of segments in U-column above panel row jcol | 
|  | Index nseg;    // Number of segments in each U-column | 
|  | Index irep; | 
|  | Index i, k, jj; | 
|  | for (jcol = 0; jcol < n;) { | 
|  | // Adjust panel size so that a panel won't overlap with the next relaxed snode. | 
|  | Index panel_size = m_perfv.panel_size;  // upper bound on panel width | 
|  | for (k = jcol + 1; k < (std::min)(jcol + panel_size, n); k++) { | 
|  | if (relax_end(k) != emptyIdxLU) { | 
|  | panel_size = k - jcol; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (k == n) panel_size = n - jcol; | 
|  |  | 
|  | // Symbolic outer factorization on a panel of columns | 
|  | Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, | 
|  | marker, parent, xplore, m_glu); | 
|  |  | 
|  | // Numeric sup-panel updates in topological order | 
|  | Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu); | 
|  |  | 
|  | // Sparse LU within the panel, and below the panel diagonal | 
|  | for (jj = jcol; jj < jcol + panel_size; jj++) { | 
|  | k = (jj - jcol) * m;  // Column index for w-wide arrays | 
|  |  | 
|  | nseg = nseg1;  // begin after all the panel segments | 
|  | // Depth-first-search for the current column | 
|  | VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m); | 
|  | VectorBlock<IndexVector> repfnz_k(repfnz, k, m); | 
|  | // Return 0 on success and > 0 number of bytes allocated when run out of space. | 
|  | info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, | 
|  | marker, parent, xplore, m_glu); | 
|  | if (info) { | 
|  | m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() "; | 
|  | m_info = NumericalIssue; | 
|  | m_factorizationIsOk = false; | 
|  | return; | 
|  | } | 
|  | // Numeric updates to this column | 
|  | VectorBlock<ScalarVector> dense_k(dense, k, m); | 
|  | VectorBlock<IndexVector> segrep_k(segrep, nseg1, m - nseg1); | 
|  | // Return 0 on success and > 0 number of bytes allocated when run out of space. | 
|  | info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu); | 
|  | if (info) { | 
|  | m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() "; | 
|  | m_info = NumericalIssue; | 
|  | m_factorizationIsOk = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Copy the U-segments to ucol(*) | 
|  | // Return 0 on success and > 0 number of bytes allocated when run out of space. | 
|  | info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k, m_perm_r.indices(), dense_k, m_glu); | 
|  | if (info) { | 
|  | m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() "; | 
|  | m_info = NumericalIssue; | 
|  | m_factorizationIsOk = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Form the L-segment | 
|  | // Return O if success, i > 0 if U(i, i) is exactly zero. | 
|  | info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu); | 
|  | if (info) { | 
|  | m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR"; | 
|  | #ifndef EIGEN_NO_IO | 
|  | std::ostringstream returnInfo; | 
|  | returnInfo << " ... ZERO COLUMN AT "; | 
|  | returnInfo << info; | 
|  | m_lastError += returnInfo.str(); | 
|  | #endif | 
|  | m_info = NumericalIssue; | 
|  | m_factorizationIsOk = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Update the determinant of the row permutation matrix | 
|  | // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not | 
|  | // directly the row pivot. | 
|  | if (pivrow != jj) m_detPermR = -m_detPermR; | 
|  |  | 
|  | // Prune columns (0:jj-1) using column jj | 
|  | Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu); | 
|  |  | 
|  | // Reset repfnz for this column | 
|  | for (i = 0; i < nseg; i++) { | 
|  | irep = segrep(i); | 
|  | repfnz_k(irep) = emptyIdxLU; | 
|  | } | 
|  | }                    // end SparseLU within the panel | 
|  | jcol += panel_size;  // Move to the next panel | 
|  | }                      // end for -- end elimination | 
|  |  | 
|  | m_detPermR = m_perm_r.determinant(); | 
|  | m_detPermC = m_perm_c.determinant(); | 
|  |  | 
|  | // Count the number of nonzeros in factors | 
|  | Base::countnz(n, m_nnzL, m_nnzU, m_glu); | 
|  | // Apply permutation  to the L subscripts | 
|  | Base::fixupL(n, m_perm_r.indices(), m_glu); | 
|  |  | 
|  | // Create supernode matrix L | 
|  | m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup); | 
|  | // Create the column major upper sparse matrix  U; | 
|  | new (&m_Ustore) Map<SparseMatrix<Scalar, ColMajor, StorageIndex>>(m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), | 
|  | m_glu.ucol.data()); | 
|  |  | 
|  | m_info = Success; | 
|  | m_factorizationIsOk = true; | 
|  | } | 
|  |  | 
|  | template <typename MappedSupernodalType> | 
|  | struct SparseLUMatrixLReturnType : internal::no_assignment_operator { | 
|  | typedef typename MappedSupernodalType::Scalar Scalar; | 
|  | explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL) {} | 
|  | Index rows() const { return m_mapL.rows(); } | 
|  | Index cols() const { return m_mapL.cols(); } | 
|  | template <typename Dest> | 
|  | void solveInPlace(MatrixBase<Dest>& X) const { | 
|  | m_mapL.solveInPlace(X); | 
|  | } | 
|  | template <bool Conjugate, typename Dest> | 
|  | void solveTransposedInPlace(MatrixBase<Dest>& X) const { | 
|  | m_mapL.template solveTransposedInPlace<Conjugate>(X); | 
|  | } | 
|  |  | 
|  | SparseMatrix<Scalar, ColMajor, Index> toSparse() const { | 
|  | ArrayXi colCount = ArrayXi::Ones(cols()); | 
|  | for (Index i = 0; i < cols(); i++) { | 
|  | typename MappedSupernodalType::InnerIterator iter(m_mapL, i); | 
|  | for (; iter; ++iter) { | 
|  | if (iter.row() > iter.col()) { | 
|  | colCount(iter.col())++; | 
|  | } | 
|  | } | 
|  | } | 
|  | SparseMatrix<Scalar, ColMajor, Index> sL(rows(), cols()); | 
|  | sL.reserve(colCount); | 
|  | for (Index i = 0; i < cols(); i++) { | 
|  | sL.insert(i, i) = 1.0; | 
|  | typename MappedSupernodalType::InnerIterator iter(m_mapL, i); | 
|  | for (; iter; ++iter) { | 
|  | if (iter.row() > iter.col()) { | 
|  | sL.insert(iter.row(), iter.col()) = iter.value(); | 
|  | } | 
|  | } | 
|  | } | 
|  | sL.makeCompressed(); | 
|  | return sL; | 
|  | } | 
|  |  | 
|  | const MappedSupernodalType& m_mapL; | 
|  | }; | 
|  |  | 
|  | template <typename MatrixLType, typename MatrixUType> | 
|  | struct SparseLUMatrixUReturnType : internal::no_assignment_operator { | 
|  | typedef typename MatrixLType::Scalar Scalar; | 
|  | SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU) : m_mapL(mapL), m_mapU(mapU) {} | 
|  | Index rows() const { return m_mapL.rows(); } | 
|  | Index cols() const { return m_mapL.cols(); } | 
|  |  | 
|  | template <typename Dest> | 
|  | void solveInPlace(MatrixBase<Dest>& X) const { | 
|  | Index nrhs = X.cols(); | 
|  | // Backward solve with U | 
|  | for (Index k = m_mapL.nsuper(); k >= 0; k--) { | 
|  | Index fsupc = m_mapL.supToCol()[k]; | 
|  | Index lda = m_mapL.colIndexPtr()[fsupc + 1] - m_mapL.colIndexPtr()[fsupc];  // leading dimension | 
|  | Index nsupc = m_mapL.supToCol()[k + 1] - fsupc; | 
|  | Index luptr = m_mapL.colIndexPtr()[fsupc]; | 
|  |  | 
|  | if (nsupc == 1) { | 
|  | for (Index j = 0; j < nrhs; j++) { | 
|  | X(fsupc, j) /= m_mapL.valuePtr()[luptr]; | 
|  | } | 
|  | } else { | 
|  | // FIXME: the following lines should use Block expressions and not Map! | 
|  | Map<const Matrix<Scalar, Dynamic, Dynamic, ColMajor>, 0, OuterStride<>> A(&(m_mapL.valuePtr()[luptr]), nsupc, | 
|  | nsupc, OuterStride<>(lda)); | 
|  | typename Dest::RowsBlockXpr U = X.derived().middleRows(fsupc, nsupc); | 
|  | U = A.template triangularView<Upper>().solve(U); | 
|  | } | 
|  |  | 
|  | for (Index j = 0; j < nrhs; ++j) { | 
|  | for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) { | 
|  | typename MatrixUType::InnerIterator it(m_mapU, jcol); | 
|  | for (; it; ++it) { | 
|  | Index irow = it.index(); | 
|  | X(irow, j) -= X(jcol, j) * it.value(); | 
|  | } | 
|  | } | 
|  | } | 
|  | }  // End For U-solve | 
|  | } | 
|  |  | 
|  | template <bool Conjugate, typename Dest> | 
|  | void solveTransposedInPlace(MatrixBase<Dest>& X) const { | 
|  | using numext::conj; | 
|  | Index nrhs = X.cols(); | 
|  | // Forward solve with U | 
|  | for (Index k = 0; k <= m_mapL.nsuper(); k++) { | 
|  | Index fsupc = m_mapL.supToCol()[k]; | 
|  | Index lda = m_mapL.colIndexPtr()[fsupc + 1] - m_mapL.colIndexPtr()[fsupc];  // leading dimension | 
|  | Index nsupc = m_mapL.supToCol()[k + 1] - fsupc; | 
|  | Index luptr = m_mapL.colIndexPtr()[fsupc]; | 
|  |  | 
|  | for (Index j = 0; j < nrhs; ++j) { | 
|  | for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) { | 
|  | typename MatrixUType::InnerIterator it(m_mapU, jcol); | 
|  | for (; it; ++it) { | 
|  | Index irow = it.index(); | 
|  | X(jcol, j) -= X(irow, j) * (Conjugate ? conj(it.value()) : it.value()); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (nsupc == 1) { | 
|  | for (Index j = 0; j < nrhs; j++) { | 
|  | X(fsupc, j) /= (Conjugate ? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]); | 
|  | } | 
|  | } else { | 
|  | Map<const Matrix<Scalar, Dynamic, Dynamic, ColMajor>, 0, OuterStride<>> A(&(m_mapL.valuePtr()[luptr]), nsupc, | 
|  | nsupc, OuterStride<>(lda)); | 
|  | typename Dest::RowsBlockXpr U = X.derived().middleRows(fsupc, nsupc); | 
|  | if (Conjugate) | 
|  | U = A.adjoint().template triangularView<Lower>().solve(U); | 
|  | else | 
|  | U = A.transpose().template triangularView<Lower>().solve(U); | 
|  | } | 
|  | }  // End For U-solve | 
|  | } | 
|  |  | 
|  | SparseMatrix<Scalar, RowMajor, Index> toSparse() { | 
|  | ArrayXi rowCount = ArrayXi::Zero(rows()); | 
|  | for (Index i = 0; i < cols(); i++) { | 
|  | typename MatrixLType::InnerIterator iter(m_mapL, i); | 
|  | for (; iter; ++iter) { | 
|  | if (iter.row() <= iter.col()) { | 
|  | rowCount(iter.row())++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SparseMatrix<Scalar, RowMajor, Index> sU(rows(), cols()); | 
|  | sU.reserve(rowCount); | 
|  | for (Index i = 0; i < cols(); i++) { | 
|  | typename MatrixLType::InnerIterator iter(m_mapL, i); | 
|  | for (; iter; ++iter) { | 
|  | if (iter.row() <= iter.col()) { | 
|  | sU.insert(iter.row(), iter.col()) = iter.value(); | 
|  | } | 
|  | } | 
|  | } | 
|  | sU.makeCompressed(); | 
|  | const SparseMatrix<Scalar, RowMajor, Index> u = m_mapU;  // convert to RowMajor | 
|  | sU += u; | 
|  | return sU; | 
|  | } | 
|  |  | 
|  | const MatrixLType& m_mapL; | 
|  | const MatrixUType& m_mapU; | 
|  | }; | 
|  |  | 
|  | }  // End namespace Eigen | 
|  |  | 
|  | #endif |