| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr> |
| // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include <iostream> |
| #include <fstream> |
| #include <iomanip> |
| |
| #include "main.h" |
| #include <Eigen/LevenbergMarquardt> |
| using namespace std; |
| using namespace Eigen; |
| |
| template <typename Scalar> |
| struct DenseLM : DenseFunctor<Scalar> { |
| typedef DenseFunctor<Scalar> Base; |
| typedef typename Base::JacobianType JacobianType; |
| typedef Matrix<Scalar, Dynamic, 1> VectorType; |
| |
| DenseLM(int n, int m) : DenseFunctor<Scalar>(n, m) {} |
| |
| VectorType model(const VectorType& uv, VectorType& x) { |
| VectorType y; // Should change to use expression template |
| int m = Base::values(); |
| int n = Base::inputs(); |
| eigen_assert(uv.size() % 2 == 0); |
| eigen_assert(uv.size() == n); |
| eigen_assert(x.size() == m); |
| y.setZero(m); |
| int half = n / 2; |
| VectorBlock<const VectorType> u(uv, 0, half); |
| VectorBlock<const VectorType> v(uv, half, half); |
| for (int j = 0; j < m; j++) { |
| for (int i = 0; i < half; i++) y(j) += u(i) * std::exp(-(x(j) - i) * (x(j) - i) / (v(i) * v(i))); |
| } |
| return y; |
| } |
| void initPoints(VectorType& uv_ref, VectorType& x) { |
| m_x = x; |
| m_y = this->model(uv_ref, x); |
| } |
| |
| int operator()(const VectorType& uv, VectorType& fvec) { |
| int m = Base::values(); |
| int n = Base::inputs(); |
| eigen_assert(uv.size() % 2 == 0); |
| eigen_assert(uv.size() == n); |
| eigen_assert(fvec.size() == m); |
| int half = n / 2; |
| VectorBlock<const VectorType> u(uv, 0, half); |
| VectorBlock<const VectorType> v(uv, half, half); |
| for (int j = 0; j < m; j++) { |
| fvec(j) = m_y(j); |
| for (int i = 0; i < half; i++) { |
| fvec(j) -= u(i) * std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i))); |
| } |
| } |
| |
| return 0; |
| } |
| int df(const VectorType& uv, JacobianType& fjac) { |
| int m = Base::values(); |
| int n = Base::inputs(); |
| eigen_assert(n == uv.size()); |
| eigen_assert(fjac.rows() == m); |
| eigen_assert(fjac.cols() == n); |
| int half = n / 2; |
| VectorBlock<const VectorType> u(uv, 0, half); |
| VectorBlock<const VectorType> v(uv, half, half); |
| for (int j = 0; j < m; j++) { |
| for (int i = 0; i < half; i++) { |
| fjac.coeffRef(j, i) = -std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i))); |
| fjac.coeffRef(j, i + half) = -2. * u(i) * (m_x(j) - i) * (m_x(j) - i) / (std::pow(v(i), 3)) * |
| std::exp(-(m_x(j) - i) * (m_x(j) - i) / (v(i) * v(i))); |
| } |
| } |
| return 0; |
| } |
| VectorType m_x, m_y; // Data Points |
| }; |
| |
| template <typename FunctorType, typename VectorType> |
| int test_minimizeLM(FunctorType& functor, VectorType& uv) { |
| LevenbergMarquardt<FunctorType> lm(functor); |
| LevenbergMarquardtSpace::Status info; |
| |
| info = lm.minimize(uv); |
| |
| VERIFY_IS_EQUAL(info, 1); |
| // FIXME Check other parameters |
| return info; |
| } |
| |
| template <typename FunctorType, typename VectorType> |
| int test_lmder(FunctorType& functor, VectorType& uv) { |
| typedef typename VectorType::Scalar Scalar; |
| LevenbergMarquardtSpace::Status info; |
| LevenbergMarquardt<FunctorType> lm(functor); |
| info = lm.lmder1(uv); |
| |
| VERIFY_IS_EQUAL(info, 1); |
| // FIXME Check other parameters |
| return info; |
| } |
| |
| template <typename FunctorType, typename VectorType> |
| int test_minimizeSteps(FunctorType& functor, VectorType& uv) { |
| LevenbergMarquardtSpace::Status info; |
| LevenbergMarquardt<FunctorType> lm(functor); |
| info = lm.minimizeInit(uv); |
| if (info == LevenbergMarquardtSpace::ImproperInputParameters) return info; |
| do { |
| info = lm.minimizeOneStep(uv); |
| } while (info == LevenbergMarquardtSpace::Running); |
| |
| VERIFY_IS_EQUAL(info, 1); |
| // FIXME Check other parameters |
| return info; |
| } |
| |
| template <typename T> |
| void test_denseLM_T() { |
| typedef Matrix<T, Dynamic, 1> VectorType; |
| |
| int inputs = 10; |
| int values = 1000; |
| DenseLM<T> dense_gaussian(inputs, values); |
| VectorType uv(inputs), uv_ref(inputs); |
| VectorType x(values); |
| |
| // Generate the reference solution |
| uv_ref << -2, 1, 4, 8, 6, 1.8, 1.2, 1.1, 1.9, 3; |
| |
| // Generate the reference data points |
| x.setRandom(); |
| x = 10 * x; |
| x.array() += 10; |
| dense_gaussian.initPoints(uv_ref, x); |
| |
| // Generate the initial parameters |
| VectorBlock<VectorType> u(uv, 0, inputs / 2); |
| VectorBlock<VectorType> v(uv, inputs / 2, inputs / 2); |
| |
| // Solve the optimization problem |
| |
| // Solve in one go |
| u.setOnes(); |
| v.setOnes(); |
| test_minimizeLM(dense_gaussian, uv); |
| |
| // Solve until the machine precision |
| u.setOnes(); |
| v.setOnes(); |
| test_lmder(dense_gaussian, uv); |
| |
| // Solve step by step |
| v.setOnes(); |
| u.setOnes(); |
| test_minimizeSteps(dense_gaussian, uv); |
| } |
| |
| EIGEN_DECLARE_TEST(denseLM) { |
| CALL_SUBTEST_2(test_denseLM_T<double>()); |
| |
| // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>()); |
| } |