blob: a56118c3850314f3d9dd854d8e342598c03948f7 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template <typename MatrixType>
void diagonal(const MatrixType& m) {
typedef typename MatrixType::Scalar Scalar;
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols);
Scalar s1 = internal::random<Scalar>();
// check diagonal()
VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
m2.diagonal() = 2 * m1.diagonal();
m2.diagonal()[0] *= 3;
if (rows > 2) {
enum { N1 = MatrixType::RowsAtCompileTime > 2 ? 2 : 0, N2 = MatrixType::RowsAtCompileTime > 1 ? -1 : 0 };
// check sub/super diagonal
if (MatrixType::SizeAtCompileTime != Dynamic) {
VERIFY(m1.template diagonal<N1>().RowsAtCompileTime == m1.diagonal(N1).size());
VERIFY(m1.template diagonal<N2>().RowsAtCompileTime == m1.diagonal(N2).size());
}
m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>();
VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1));
m2.template diagonal<N1>()[0] *= 3;
VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]);
m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>();
m2.template diagonal<N2>()[0] *= 3;
VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]);
m2.diagonal(N1) = 2 * m1.diagonal(N1);
VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1));
m2.diagonal(N1)[0] *= 3;
VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]);
m2.diagonal(N2) = 2 * m1.diagonal(N2);
VERIFY_IS_APPROX(m2.template diagonal<N2>(), static_cast<Scalar>(2) * m1.diagonal(N2));
m2.diagonal(N2)[0] *= 3;
VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]);
m2.diagonal(N2).x() = s1;
VERIFY_IS_APPROX(m2.diagonal(N2).x(), s1);
m2.diagonal(N2).coeffRef(0) = Scalar(2) * s1;
VERIFY_IS_APPROX(m2.diagonal(N2).coeff(0), Scalar(2) * s1);
}
VERIFY(m1.diagonal(cols).size() == 0);
VERIFY(m1.diagonal(-rows).size() == 0);
}
template <typename MatrixType>
void diagonal_assert(const MatrixType& m) {
Index rows = m.rows();
Index cols = m.cols();
MatrixType m1 = MatrixType::Random(rows, cols);
if (rows >= 2 && cols >= 2) {
VERIFY_RAISES_ASSERT(m1 += m1.diagonal());
VERIFY_RAISES_ASSERT(m1 -= m1.diagonal());
VERIFY_RAISES_ASSERT(m1.array() *= m1.diagonal().array());
VERIFY_RAISES_ASSERT(m1.array() /= m1.diagonal().array());
}
VERIFY_RAISES_ASSERT(m1.diagonal(cols + 1));
VERIFY_RAISES_ASSERT(m1.diagonal(-(rows + 1)));
}
EIGEN_DECLARE_TEST(diagonal) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(diagonal(Matrix<float, 1, 1>()));
CALL_SUBTEST_1(diagonal(Matrix<float, 4, 9>()));
CALL_SUBTEST_1(diagonal(Matrix<float, 7, 3>()));
CALL_SUBTEST_2(diagonal(Matrix4d()));
CALL_SUBTEST_2(diagonal(
MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(diagonal(
MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(diagonal(
MatrixXcd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_1(diagonal(
MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_1(diagonal(Matrix<float, Dynamic, 4>(3, 4)));
CALL_SUBTEST_1(diagonal_assert(
MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
}
}