| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| #if EIGEN_MAX_ALIGN_BYTES > 0 |
| #define ALIGNMENT EIGEN_MAX_ALIGN_BYTES |
| #else |
| #define ALIGNMENT 1 |
| #endif |
| |
| typedef Matrix<float, 16, 1> Vector16f; |
| typedef Matrix<float, 8, 1> Vector8f; |
| |
| void check_handmade_aligned_malloc() { |
| // Hand-make alignment needs at least sizeof(void*) to store the offset. |
| constexpr int alignment = (std::max<int>)(EIGEN_DEFAULT_ALIGN_BYTES, sizeof(void *)); |
| |
| for (int i = 1; i < 1000; i++) { |
| char *p = (char *)internal::handmade_aligned_malloc(i, alignment); |
| VERIFY(std::uintptr_t(p) % ALIGNMENT == 0); |
| // if the buffer is wrongly allocated this will give a bad write --> check with valgrind |
| for (int j = 0; j < i; j++) p[j] = 0; |
| internal::handmade_aligned_free(p); |
| } |
| } |
| |
| void check_aligned_malloc() { |
| for (int i = ALIGNMENT; i < 1000; i++) { |
| char *p = (char *)internal::aligned_malloc(i); |
| VERIFY(std::uintptr_t(p) % ALIGNMENT == 0); |
| // if the buffer is wrongly allocated this will give a bad write --> check with valgrind |
| for (int j = 0; j < i; j++) p[j] = 0; |
| internal::aligned_free(p); |
| } |
| } |
| |
| void check_aligned_new() { |
| for (int i = ALIGNMENT; i < 1000; i++) { |
| float *p = internal::aligned_new<float>(i); |
| VERIFY(std::uintptr_t(p) % ALIGNMENT == 0); |
| // if the buffer is wrongly allocated this will give a bad write --> check with valgrind |
| for (int j = 0; j < i; j++) p[j] = 0; |
| internal::aligned_delete(p, i); |
| } |
| } |
| |
| void check_aligned_stack_alloc() { |
| for (int i = ALIGNMENT; i < 400; i++) { |
| ei_declare_aligned_stack_constructed_variable(float, p, i, 0); |
| VERIFY(std::uintptr_t(p) % ALIGNMENT == 0); |
| // if the buffer is wrongly allocated this will give a bad write --> check with valgrind |
| for (int j = 0; j < i; j++) p[j] = 0; |
| } |
| } |
| |
| // test compilation with both a struct and a class... |
| struct MyStruct { |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| char dummychar; |
| Vector16f avec; |
| }; |
| |
| class MyClassA { |
| public: |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| char dummychar; |
| Vector16f avec; |
| }; |
| |
| template <typename T> |
| void check_dynaligned() { |
| // TODO have to be updated once we support multiple alignment values |
| if (T::SizeAtCompileTime % ALIGNMENT == 0) { |
| T *obj = new T; |
| VERIFY(T::NeedsToAlign == 1); |
| VERIFY(std::uintptr_t(obj) % ALIGNMENT == 0); |
| delete obj; |
| } |
| } |
| |
| template <typename T> |
| void check_custom_new_delete() { |
| { |
| T *t = new T; |
| delete t; |
| } |
| |
| { |
| std::size_t N = internal::random<std::size_t>(1, 10); |
| T *t = new T[N]; |
| delete[] t; |
| } |
| |
| #if EIGEN_MAX_ALIGN_BYTES > 0 && (!EIGEN_HAS_CXX17_OVERALIGN) |
| { |
| T *t = static_cast<T *>((T::operator new)(sizeof(T))); |
| (T::operator delete)(t, sizeof(T)); |
| } |
| |
| { |
| T *t = static_cast<T *>((T::operator new)(sizeof(T))); |
| (T::operator delete)(t); |
| } |
| #endif |
| } |
| |
| EIGEN_DECLARE_TEST(dynalloc) { |
| // low level dynamic memory allocation |
| CALL_SUBTEST(check_handmade_aligned_malloc()); |
| CALL_SUBTEST(check_aligned_malloc()); |
| CALL_SUBTEST(check_aligned_new()); |
| CALL_SUBTEST(check_aligned_stack_alloc()); |
| |
| for (int i = 0; i < g_repeat * 100; ++i) { |
| CALL_SUBTEST(check_custom_new_delete<Vector4f>()); |
| CALL_SUBTEST(check_custom_new_delete<Vector2f>()); |
| CALL_SUBTEST(check_custom_new_delete<Matrix4f>()); |
| CALL_SUBTEST(check_custom_new_delete<MatrixXi>()); |
| } |
| |
| // check static allocation, who knows ? |
| #if EIGEN_MAX_STATIC_ALIGN_BYTES |
| for (int i = 0; i < g_repeat * 100; ++i) { |
| CALL_SUBTEST(check_dynaligned<Vector4f>()); |
| CALL_SUBTEST(check_dynaligned<Vector2d>()); |
| CALL_SUBTEST(check_dynaligned<Matrix4f>()); |
| CALL_SUBTEST(check_dynaligned<Vector4d>()); |
| CALL_SUBTEST(check_dynaligned<Vector4i>()); |
| CALL_SUBTEST(check_dynaligned<Vector8f>()); |
| CALL_SUBTEST(check_dynaligned<Vector16f>()); |
| } |
| |
| { |
| MyStruct foo0; |
| VERIFY(std::uintptr_t(foo0.avec.data()) % ALIGNMENT == 0); |
| MyClassA fooA; |
| VERIFY(std::uintptr_t(fooA.avec.data()) % ALIGNMENT == 0); |
| } |
| |
| // dynamic allocation, single object |
| for (int i = 0; i < g_repeat * 100; ++i) { |
| MyStruct *foo0 = new MyStruct(); |
| VERIFY(std::uintptr_t(foo0->avec.data()) % ALIGNMENT == 0); |
| MyClassA *fooA = new MyClassA(); |
| VERIFY(std::uintptr_t(fooA->avec.data()) % ALIGNMENT == 0); |
| delete foo0; |
| delete fooA; |
| } |
| |
| // dynamic allocation, array |
| const int N = 10; |
| for (int i = 0; i < g_repeat * 100; ++i) { |
| MyStruct *foo0 = new MyStruct[N]; |
| VERIFY(std::uintptr_t(foo0->avec.data()) % ALIGNMENT == 0); |
| MyClassA *fooA = new MyClassA[N]; |
| VERIFY(std::uintptr_t(fooA->avec.data()) % ALIGNMENT == 0); |
| delete[] foo0; |
| delete[] fooA; |
| } |
| #endif |
| } |