| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| #include <Eigen/Cholesky> |
| #include <Eigen/QR> |
| |
| // This file test inplace decomposition through Ref<>, as supported by Cholesky, LU, and QR decompositions. |
| |
| template <typename DecType, typename MatrixType> |
| void inplace(bool square = false, bool SPD = false) { |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RhsType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ResType; |
| |
| Index rows = MatrixType::RowsAtCompileTime == Dynamic ? internal::random<Index>(2, EIGEN_TEST_MAX_SIZE / 2) |
| : Index(MatrixType::RowsAtCompileTime); |
| Index cols = MatrixType::ColsAtCompileTime == Dynamic ? (square ? rows : internal::random<Index>(2, rows)) |
| : Index(MatrixType::ColsAtCompileTime); |
| |
| MatrixType A = MatrixType::Random(rows, cols); |
| RhsType b = RhsType::Random(rows); |
| ResType x(cols); |
| |
| if (SPD) { |
| assert(square); |
| A.topRows(cols) = A.topRows(cols).adjoint() * A.topRows(cols); |
| A.diagonal().array() += 1e-3; |
| } |
| |
| MatrixType A0 = A; |
| MatrixType A1 = A; |
| |
| DecType dec(A); |
| |
| // Check that the content of A has been modified |
| VERIFY_IS_NOT_APPROX(A, A0); |
| |
| // Check that the decomposition is correct: |
| if (rows == cols) { |
| VERIFY_IS_APPROX(A0 * (x = dec.solve(b)), b); |
| } else { |
| VERIFY_IS_APPROX(A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b); |
| } |
| |
| // Check that modifying A breaks the current dec: |
| A.setRandom(); |
| if (rows == cols) { |
| VERIFY_IS_NOT_APPROX(A0 * (x = dec.solve(b)), b); |
| } else { |
| VERIFY_IS_NOT_APPROX(A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b); |
| } |
| |
| // Check that calling compute(A1) does not modify A1: |
| A = A0; |
| dec.compute(A1); |
| VERIFY_IS_EQUAL(A0, A1); |
| VERIFY_IS_NOT_APPROX(A, A0); |
| if (rows == cols) { |
| VERIFY_IS_APPROX(A0 * (x = dec.solve(b)), b); |
| } else { |
| VERIFY_IS_APPROX(A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(inplace_decomposition) { |
| EIGEN_UNUSED typedef Matrix<double, 4, 3> Matrix43d; |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1((inplace<LLT<Ref<MatrixXd> >, MatrixXd>(true, true))); |
| CALL_SUBTEST_1((inplace<LLT<Ref<Matrix4d> >, Matrix4d>(true, true))); |
| |
| CALL_SUBTEST_2((inplace<LDLT<Ref<MatrixXd> >, MatrixXd>(true, true))); |
| CALL_SUBTEST_2((inplace<LDLT<Ref<Matrix4d> >, Matrix4d>(true, true))); |
| |
| CALL_SUBTEST_3((inplace<PartialPivLU<Ref<MatrixXd> >, MatrixXd>(true, false))); |
| CALL_SUBTEST_3((inplace<PartialPivLU<Ref<Matrix4d> >, Matrix4d>(true, false))); |
| |
| CALL_SUBTEST_4((inplace<FullPivLU<Ref<MatrixXd> >, MatrixXd>(true, false))); |
| CALL_SUBTEST_4((inplace<FullPivLU<Ref<Matrix4d> >, Matrix4d>(true, false))); |
| |
| CALL_SUBTEST_5((inplace<HouseholderQR<Ref<MatrixXd> >, MatrixXd>(false, false))); |
| CALL_SUBTEST_5((inplace<HouseholderQR<Ref<Matrix43d> >, Matrix43d>(false, false))); |
| |
| CALL_SUBTEST_6((inplace<ColPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false, false))); |
| CALL_SUBTEST_6((inplace<ColPivHouseholderQR<Ref<Matrix43d> >, Matrix43d>(false, false))); |
| |
| CALL_SUBTEST_7((inplace<FullPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false, false))); |
| CALL_SUBTEST_7((inplace<FullPivHouseholderQR<Ref<Matrix43d> >, Matrix43d>(false, false))); |
| |
| CALL_SUBTEST_8((inplace<CompleteOrthogonalDecomposition<Ref<MatrixXd> >, MatrixXd>(false, false))); |
| CALL_SUBTEST_8((inplace<CompleteOrthogonalDecomposition<Ref<Matrix43d> >, Matrix43d>(false, false))); |
| } |
| } |