blob: a57596c0db959e36d6ed7425f90b81aa693ffc6a [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
#include <Eigen/Cholesky>
#include <Eigen/QR>
// This file test inplace decomposition through Ref<>, as supported by Cholesky, LU, and QR decompositions.
template <typename DecType, typename MatrixType>
void inplace(bool square = false, bool SPD = false) {
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RhsType;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ResType;
Index rows = MatrixType::RowsAtCompileTime == Dynamic ? internal::random<Index>(2, EIGEN_TEST_MAX_SIZE / 2)
: Index(MatrixType::RowsAtCompileTime);
Index cols = MatrixType::ColsAtCompileTime == Dynamic ? (square ? rows : internal::random<Index>(2, rows))
: Index(MatrixType::ColsAtCompileTime);
MatrixType A = MatrixType::Random(rows, cols);
RhsType b = RhsType::Random(rows);
ResType x(cols);
if (SPD) {
assert(square);
A.topRows(cols) = A.topRows(cols).adjoint() * A.topRows(cols);
A.diagonal().array() += 1e-3;
}
MatrixType A0 = A;
MatrixType A1 = A;
DecType dec(A);
// Check that the content of A has been modified
VERIFY_IS_NOT_APPROX(A, A0);
// Check that the decomposition is correct:
if (rows == cols) {
VERIFY_IS_APPROX(A0 * (x = dec.solve(b)), b);
} else {
VERIFY_IS_APPROX(A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b);
}
// Check that modifying A breaks the current dec:
A.setRandom();
if (rows == cols) {
VERIFY_IS_NOT_APPROX(A0 * (x = dec.solve(b)), b);
} else {
VERIFY_IS_NOT_APPROX(A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b);
}
// Check that calling compute(A1) does not modify A1:
A = A0;
dec.compute(A1);
VERIFY_IS_EQUAL(A0, A1);
VERIFY_IS_NOT_APPROX(A, A0);
if (rows == cols) {
VERIFY_IS_APPROX(A0 * (x = dec.solve(b)), b);
} else {
VERIFY_IS_APPROX(A0.transpose() * A0 * (x = dec.solve(b)), A0.transpose() * b);
}
}
EIGEN_DECLARE_TEST(inplace_decomposition) {
EIGEN_UNUSED typedef Matrix<double, 4, 3> Matrix43d;
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1((inplace<LLT<Ref<MatrixXd> >, MatrixXd>(true, true)));
CALL_SUBTEST_1((inplace<LLT<Ref<Matrix4d> >, Matrix4d>(true, true)));
CALL_SUBTEST_2((inplace<LDLT<Ref<MatrixXd> >, MatrixXd>(true, true)));
CALL_SUBTEST_2((inplace<LDLT<Ref<Matrix4d> >, Matrix4d>(true, true)));
CALL_SUBTEST_3((inplace<PartialPivLU<Ref<MatrixXd> >, MatrixXd>(true, false)));
CALL_SUBTEST_3((inplace<PartialPivLU<Ref<Matrix4d> >, Matrix4d>(true, false)));
CALL_SUBTEST_4((inplace<FullPivLU<Ref<MatrixXd> >, MatrixXd>(true, false)));
CALL_SUBTEST_4((inplace<FullPivLU<Ref<Matrix4d> >, Matrix4d>(true, false)));
CALL_SUBTEST_5((inplace<HouseholderQR<Ref<MatrixXd> >, MatrixXd>(false, false)));
CALL_SUBTEST_5((inplace<HouseholderQR<Ref<Matrix43d> >, Matrix43d>(false, false)));
CALL_SUBTEST_6((inplace<ColPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false, false)));
CALL_SUBTEST_6((inplace<ColPivHouseholderQR<Ref<Matrix43d> >, Matrix43d>(false, false)));
CALL_SUBTEST_7((inplace<FullPivHouseholderQR<Ref<MatrixXd> >, MatrixXd>(false, false)));
CALL_SUBTEST_7((inplace<FullPivHouseholderQR<Ref<Matrix43d> >, Matrix43d>(false, false)));
CALL_SUBTEST_8((inplace<CompleteOrthogonalDecomposition<Ref<MatrixXd> >, MatrixXd>(false, false)));
CALL_SUBTEST_8((inplace<CompleteOrthogonalDecomposition<Ref<Matrix43d> >, Matrix43d>(false, false)));
}
}