| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| |
| template <typename MatrixType> |
| void inverse_for_fixed_size(const MatrixType&, std::enable_if_t<MatrixType::SizeAtCompileTime == Dynamic>* = 0) {} |
| |
| template <typename MatrixType> |
| void inverse_for_fixed_size(const MatrixType& m1, std::enable_if_t<MatrixType::SizeAtCompileTime != Dynamic>* = 0) { |
| using std::abs; |
| |
| MatrixType m2, identity = MatrixType::Identity(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; |
| |
| // computeInverseAndDetWithCheck tests |
| // First: an invertible matrix |
| bool invertible; |
| Scalar det; |
| |
| m2.setZero(); |
| m1.computeInverseAndDetWithCheck(m2, det, invertible); |
| VERIFY(invertible); |
| VERIFY_IS_APPROX(identity, m1 * m2); |
| VERIFY_IS_APPROX(det, m1.determinant()); |
| |
| m2.setZero(); |
| m1.computeInverseWithCheck(m2, invertible); |
| VERIFY(invertible); |
| VERIFY_IS_APPROX(identity, m1 * m2); |
| |
| // Second: a rank one matrix (not invertible, except for 1x1 matrices) |
| VectorType v3 = VectorType::Random(); |
| MatrixType m3 = v3 * v3.transpose(), m4; |
| m3.computeInverseAndDetWithCheck(m4, det, invertible); |
| VERIFY(m1.rows() == 1 ? invertible : !invertible); |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(det - m3.determinant()), RealScalar(1)); |
| m3.computeInverseWithCheck(m4, invertible); |
| VERIFY(m1.rows() == 1 ? invertible : !invertible); |
| |
| // check with submatrices |
| { |
| Matrix<Scalar, MatrixType::RowsAtCompileTime + 1, MatrixType::RowsAtCompileTime + 1, MatrixType::Options> m5; |
| m5.setRandom(); |
| m5.topLeftCorner(m1.rows(), m1.rows()) = m1; |
| m2 = m5.template topLeftCorner<MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>().inverse(); |
| VERIFY_IS_APPROX((m5.template topLeftCorner<MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>()), |
| m2.inverse()); |
| } |
| } |
| |
| template <typename MatrixType> |
| void inverse(const MatrixType& m) { |
| /* this test covers the following files: |
| Inverse.h |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| |
| MatrixType m1(rows, cols), m2(rows, cols), identity = MatrixType::Identity(rows, rows); |
| createRandomPIMatrixOfRank(rows, rows, rows, m1); |
| m2 = m1.inverse(); |
| VERIFY_IS_APPROX(m1, m2.inverse()); |
| |
| VERIFY_IS_APPROX((Scalar(2) * m2).inverse(), m2.inverse() * Scalar(0.5)); |
| |
| VERIFY_IS_APPROX(identity, m1.inverse() * m1); |
| VERIFY_IS_APPROX(identity, m1 * m1.inverse()); |
| |
| VERIFY_IS_APPROX(m1, m1.inverse().inverse()); |
| |
| // since for the general case we implement separately row-major and col-major, test that |
| VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose())); |
| |
| inverse_for_fixed_size(m1); |
| |
| // check in-place inversion |
| if (MatrixType::RowsAtCompileTime >= 2 && MatrixType::RowsAtCompileTime <= 4) { |
| // in-place is forbidden |
| VERIFY_RAISES_ASSERT(m1 = m1.inverse()); |
| } else { |
| m2 = m1.inverse(); |
| m1 = m1.inverse(); |
| VERIFY_IS_APPROX(m1, m2); |
| } |
| } |
| |
| template <typename Scalar> |
| void inverse_zerosized() { |
| Matrix<Scalar, Dynamic, Dynamic> A(0, 0); |
| { |
| Matrix<Scalar, 0, 1> b, x; |
| x = A.inverse() * b; |
| } |
| { |
| Matrix<Scalar, Dynamic, Dynamic> b(0, 1), x; |
| x = A.inverse() * b; |
| VERIFY_IS_EQUAL(x.rows(), 0); |
| VERIFY_IS_EQUAL(x.cols(), 1); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(inverse) { |
| int s = 0; |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(inverse(Matrix<double, 1, 1>())); |
| CALL_SUBTEST_2(inverse(Matrix2d())); |
| CALL_SUBTEST_3(inverse(Matrix3f())); |
| CALL_SUBTEST_4(inverse(Matrix4f())); |
| CALL_SUBTEST_4(inverse(Matrix<float, 4, 4, DontAlign>())); |
| |
| s = internal::random<int>(50, 320); |
| CALL_SUBTEST_5(inverse(MatrixXf(s, s))); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| CALL_SUBTEST_5(inverse_zerosized<float>()); |
| CALL_SUBTEST_5(inverse(MatrixXf(0, 0))); |
| CALL_SUBTEST_5(inverse(MatrixXf(1, 1))); |
| |
| s = internal::random<int>(25, 100); |
| CALL_SUBTEST_6(inverse(MatrixXcd(s, s))); |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| |
| CALL_SUBTEST_7(inverse(Matrix4d())); |
| CALL_SUBTEST_7(inverse(Matrix<double, 4, 4, DontAlign>())); |
| |
| CALL_SUBTEST_8(inverse(Matrix4cd())); |
| } |
| } |