blob: d564db404afadc4e349a580b28339d76b2681944 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
template <typename MatrixType>
void inverse_for_fixed_size(const MatrixType&, std::enable_if_t<MatrixType::SizeAtCompileTime == Dynamic>* = 0) {}
template <typename MatrixType>
void inverse_for_fixed_size(const MatrixType& m1, std::enable_if_t<MatrixType::SizeAtCompileTime != Dynamic>* = 0) {
using std::abs;
MatrixType m2, identity = MatrixType::Identity();
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
// computeInverseAndDetWithCheck tests
// First: an invertible matrix
bool invertible;
Scalar det;
m2.setZero();
m1.computeInverseAndDetWithCheck(m2, det, invertible);
VERIFY(invertible);
VERIFY_IS_APPROX(identity, m1 * m2);
VERIFY_IS_APPROX(det, m1.determinant());
m2.setZero();
m1.computeInverseWithCheck(m2, invertible);
VERIFY(invertible);
VERIFY_IS_APPROX(identity, m1 * m2);
// Second: a rank one matrix (not invertible, except for 1x1 matrices)
VectorType v3 = VectorType::Random();
MatrixType m3 = v3 * v3.transpose(), m4;
m3.computeInverseAndDetWithCheck(m4, det, invertible);
VERIFY(m1.rows() == 1 ? invertible : !invertible);
VERIFY_IS_MUCH_SMALLER_THAN(abs(det - m3.determinant()), RealScalar(1));
m3.computeInverseWithCheck(m4, invertible);
VERIFY(m1.rows() == 1 ? invertible : !invertible);
// check with submatrices
{
Matrix<Scalar, MatrixType::RowsAtCompileTime + 1, MatrixType::RowsAtCompileTime + 1, MatrixType::Options> m5;
m5.setRandom();
m5.topLeftCorner(m1.rows(), m1.rows()) = m1;
m2 = m5.template topLeftCorner<MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>().inverse();
VERIFY_IS_APPROX((m5.template topLeftCorner<MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime>()),
m2.inverse());
}
}
template <typename MatrixType>
void inverse(const MatrixType& m) {
/* this test covers the following files:
Inverse.h
*/
Index rows = m.rows();
Index cols = m.cols();
typedef typename MatrixType::Scalar Scalar;
MatrixType m1(rows, cols), m2(rows, cols), identity = MatrixType::Identity(rows, rows);
createRandomPIMatrixOfRank(rows, rows, rows, m1);
m2 = m1.inverse();
VERIFY_IS_APPROX(m1, m2.inverse());
VERIFY_IS_APPROX((Scalar(2) * m2).inverse(), m2.inverse() * Scalar(0.5));
VERIFY_IS_APPROX(identity, m1.inverse() * m1);
VERIFY_IS_APPROX(identity, m1 * m1.inverse());
VERIFY_IS_APPROX(m1, m1.inverse().inverse());
// since for the general case we implement separately row-major and col-major, test that
VERIFY_IS_APPROX(MatrixType(m1.transpose().inverse()), MatrixType(m1.inverse().transpose()));
inverse_for_fixed_size(m1);
// check in-place inversion
if (MatrixType::RowsAtCompileTime >= 2 && MatrixType::RowsAtCompileTime <= 4) {
// in-place is forbidden
VERIFY_RAISES_ASSERT(m1 = m1.inverse());
} else {
m2 = m1.inverse();
m1 = m1.inverse();
VERIFY_IS_APPROX(m1, m2);
}
}
template <typename Scalar>
void inverse_zerosized() {
Matrix<Scalar, Dynamic, Dynamic> A(0, 0);
{
Matrix<Scalar, 0, 1> b, x;
x = A.inverse() * b;
}
{
Matrix<Scalar, Dynamic, Dynamic> b(0, 1), x;
x = A.inverse() * b;
VERIFY_IS_EQUAL(x.rows(), 0);
VERIFY_IS_EQUAL(x.cols(), 1);
}
}
EIGEN_DECLARE_TEST(inverse) {
int s = 0;
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(inverse(Matrix<double, 1, 1>()));
CALL_SUBTEST_2(inverse(Matrix2d()));
CALL_SUBTEST_3(inverse(Matrix3f()));
CALL_SUBTEST_4(inverse(Matrix4f()));
CALL_SUBTEST_4(inverse(Matrix<float, 4, 4, DontAlign>()));
s = internal::random<int>(50, 320);
CALL_SUBTEST_5(inverse(MatrixXf(s, s)));
TEST_SET_BUT_UNUSED_VARIABLE(s)
CALL_SUBTEST_5(inverse_zerosized<float>());
CALL_SUBTEST_5(inverse(MatrixXf(0, 0)));
CALL_SUBTEST_5(inverse(MatrixXf(1, 1)));
s = internal::random<int>(25, 100);
CALL_SUBTEST_6(inverse(MatrixXcd(s, s)));
TEST_SET_BUT_UNUSED_VARIABLE(s)
CALL_SUBTEST_7(inverse(Matrix4d()));
CALL_SUBTEST_7(inverse(Matrix<double, 4, 4, DontAlign>()));
CALL_SUBTEST_8(inverse(Matrix4cd()));
}
}