blob: 50c1e6067252acd6c309c9d103d3c80cd816a6b5 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <limits>
#include <Eigen/Eigenvalues>
template <typename MatrixType>
void real_qz(const MatrixType& m) {
/* this test covers the following files:
RealQZ.h
*/
using std::abs;
Index dim = m.cols();
MatrixType A = MatrixType::Random(dim, dim), B = MatrixType::Random(dim, dim);
// Regression test for bug 985: Randomly set rows or columns to zero
Index k = internal::random<Index>(0, dim - 1);
switch (internal::random<int>(0, 10)) {
case 0:
A.row(k).setZero();
break;
case 1:
A.col(k).setZero();
break;
case 2:
B.row(k).setZero();
break;
case 3:
B.col(k).setZero();
break;
default:
break;
}
RealQZ<MatrixType> qz(dim);
// TODO enable full-prealocation of required memory, this probably requires an in-place mode for
// HessenbergDecomposition
// Eigen::internal::set_is_malloc_allowed(false);
qz.compute(A, B);
// Eigen::internal::set_is_malloc_allowed(true);
VERIFY_IS_EQUAL(qz.info(), Success);
// check for zeros
bool all_zeros = true;
for (Index i = 0; i < A.cols(); i++)
for (Index j = 0; j < i; j++) {
if (!numext::is_exactly_zero(abs(qz.matrixT()(i, j)))) {
std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i, j) << std::endl;
all_zeros = false;
}
if (j < i - 1 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j)))) {
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << std::endl;
all_zeros = false;
}
if (j == i - 1 && j > 0 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j))) &&
!numext::is_exactly_zero(abs(qz.matrixS()(i - 1, j - 1)))) {
std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << " && S(" << i - 1 << "," << j - 1
<< ") = " << qz.matrixS()(i - 1, j - 1) << std::endl;
all_zeros = false;
}
}
VERIFY_IS_EQUAL(all_zeros, true);
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixS() * qz.matrixZ(), A);
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixT() * qz.matrixZ(), B);
VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixQ().adjoint(), MatrixType::Identity(dim, dim));
VERIFY_IS_APPROX(qz.matrixZ() * qz.matrixZ().adjoint(), MatrixType::Identity(dim, dim));
}
EIGEN_DECLARE_TEST(real_qz) {
int s = 0;
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(real_qz(Matrix4f()));
s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4);
CALL_SUBTEST_2(real_qz(MatrixXd(s, s)));
// some trivial but implementation-wise tricky cases
CALL_SUBTEST_2(real_qz(MatrixXd(1, 1)));
CALL_SUBTEST_2(real_qz(MatrixXd(2, 2)));
CALL_SUBTEST_3(real_qz(Matrix<double, 1, 1>()));
CALL_SUBTEST_4(real_qz(Matrix2d()));
}
TEST_SET_BUT_UNUSED_VARIABLE(s)
}