| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2012 Alexey Korepanov <kaikaikai@yandex.ru> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_RUNTIME_NO_MALLOC |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| template <typename MatrixType> |
| void real_qz(const MatrixType& m) { |
| /* this test covers the following files: |
| RealQZ.h |
| */ |
| using std::abs; |
| |
| Index dim = m.cols(); |
| |
| MatrixType A = MatrixType::Random(dim, dim), B = MatrixType::Random(dim, dim); |
| |
| // Regression test for bug 985: Randomly set rows or columns to zero |
| Index k = internal::random<Index>(0, dim - 1); |
| switch (internal::random<int>(0, 10)) { |
| case 0: |
| A.row(k).setZero(); |
| break; |
| case 1: |
| A.col(k).setZero(); |
| break; |
| case 2: |
| B.row(k).setZero(); |
| break; |
| case 3: |
| B.col(k).setZero(); |
| break; |
| default: |
| break; |
| } |
| |
| RealQZ<MatrixType> qz(dim); |
| // TODO enable full-prealocation of required memory, this probably requires an in-place mode for |
| // HessenbergDecomposition |
| // Eigen::internal::set_is_malloc_allowed(false); |
| qz.compute(A, B); |
| // Eigen::internal::set_is_malloc_allowed(true); |
| |
| VERIFY_IS_EQUAL(qz.info(), Success); |
| // check for zeros |
| bool all_zeros = true; |
| for (Index i = 0; i < A.cols(); i++) |
| for (Index j = 0; j < i; j++) { |
| if (!numext::is_exactly_zero(abs(qz.matrixT()(i, j)))) { |
| std::cerr << "Error: T(" << i << "," << j << ") = " << qz.matrixT()(i, j) << std::endl; |
| all_zeros = false; |
| } |
| if (j < i - 1 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j)))) { |
| std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << std::endl; |
| all_zeros = false; |
| } |
| if (j == i - 1 && j > 0 && !numext::is_exactly_zero(abs(qz.matrixS()(i, j))) && |
| !numext::is_exactly_zero(abs(qz.matrixS()(i - 1, j - 1)))) { |
| std::cerr << "Error: S(" << i << "," << j << ") = " << qz.matrixS()(i, j) << " && S(" << i - 1 << "," << j - 1 |
| << ") = " << qz.matrixS()(i - 1, j - 1) << std::endl; |
| all_zeros = false; |
| } |
| } |
| VERIFY_IS_EQUAL(all_zeros, true); |
| VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixS() * qz.matrixZ(), A); |
| VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixT() * qz.matrixZ(), B); |
| VERIFY_IS_APPROX(qz.matrixQ() * qz.matrixQ().adjoint(), MatrixType::Identity(dim, dim)); |
| VERIFY_IS_APPROX(qz.matrixZ() * qz.matrixZ().adjoint(), MatrixType::Identity(dim, dim)); |
| } |
| |
| EIGEN_DECLARE_TEST(real_qz) { |
| int s = 0; |
| for (int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(real_qz(Matrix4f())); |
| s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); |
| CALL_SUBTEST_2(real_qz(MatrixXd(s, s))); |
| |
| // some trivial but implementation-wise tricky cases |
| CALL_SUBTEST_2(real_qz(MatrixXd(1, 1))); |
| CALL_SUBTEST_2(real_qz(MatrixXd(2, 2))); |
| CALL_SUBTEST_3(real_qz(Matrix<double, 1, 1>())); |
| CALL_SUBTEST_4(real_qz(Matrix2d())); |
| } |
| |
| TEST_SET_BUT_UNUSED_VARIABLE(s) |
| } |